(2013•安徽模擬)如圖所示,陰影部分的面積S是h的函數(shù)(0≤h≤H),則該函數(shù)的圖象是( )

A.
B.
C.
D.
【答案】分析:此題利用排除法求解,首先確定當h=H時,陰影部分面積為0,排除A與B,又由當h=時,陰影部分的面積小于整個半圓面積的一半,排除D,從而得到答案C.
解答:解:∵當h=H時,對應陰影部分的面積為0,∴排除A與B;
∵當h=時,對應陰影部分的面積小于整個半圓面積的一半,且隨著h的增大,S隨之減小,∴排除D.
故選C.
點評:此題考查了函數(shù)問題的實際應用.注意排除法在解選擇題中的應用,還要注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)若關于x的方程2x-a=x-2的解為x=3,則字母a的值為( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)函數(shù)y=
4x+3  (x≤0)
x+3    (0<x≤1)
-x+5  (x>1)
的最大值為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)
16
的平方根是( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.

(1)如點P為銳角△ABC的費馬點.且∠ABC=60°,PA=3,PC=4,求PB的長.
(2)如圖(2),在銳角△ABC外側作等邊△ACB′連結BB′.求證:BB′過△ABC的費馬點P,且BB′=PA+PB+PC.
(3)已知銳角△ABC,∠ACB=60°,分別以三邊為邊向形外作等邊三角形ABD,BCE,ACF,請找出△ABC的費馬點,并探究S△ABC與S△ABD的和,S△BCE與S△ACF的和是否相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)(1)圖①至圖③中,AB=
2
,旋轉角∠CAB=30°.
思考:
如圖①,當線段AB繞點A旋轉至AC的位置時,則點B所經過的路徑長為
2
π
6
2
π
6
;圖中陰影部分的面積為
π
6
π
6
;

探究一
如圖②,當線段AB變?yōu)橐訟B為直徑的半圓時,將其繞點A旋轉至圖②中位置,則圖中陰影部分的面積為
π
6
π
6
;
如圖③,當線段AB變?yōu)榈妊苯侨切蜛DB時,∠ADB=90°,將其繞點A旋轉,使點B到點C,點D到點E.求圖中陰影部分的面積S.
(2)探究二
圖④中,一個不規(guī)則的圖形,其中AB=a,AD=b,點B旋轉到點C,旋轉角∠CAB=n°(0°<n<180°),點D旋轉到點E,則點B所經過的路徑長為
nπa
180
nπa
180
;圖中陰影部分的面積為
nπ(a2-b2)
360
nπ(a2-b2)
360

查看答案和解析>>

同步練習冊答案