【題目】已知:點(diǎn)O到ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.

(1)如圖1,若點(diǎn)O在BC上,求證:AB=AC;

(2)如圖2,若點(diǎn)O在ABC的內(nèi)部,求證:AB=AC.

【答案】見解析

【解析】

試題分析:(1)先利用斜邊直角邊定理證明OECOFB全等,根據(jù)全等三角形對(duì)應(yīng)角相等得到B=C,再根據(jù)等角對(duì)等邊的性質(zhì)即可得到AB=AC;

(2)過O作OEAB,OFAC,與(1)的證明思路基本相同.

證明:(1)在RtOEC和RtOFB

,

RtOECRtOFB(HL),

∴∠B=C(全等三角形的對(duì)應(yīng)角相等),

AB=AC(等角對(duì)等邊);

(2)在RtOEC和RtOFB中,

,

RtOECRtOFB(HL),

∴∠OBF=OCE,

OB=OC,

∴∠OBC=OCB

∴∠FBO+OBC=OCE+OCB,即ABC=ACB,

AB=AC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)務(wù)院辦公廳2015年3月16日發(fā)布了《中國(guó)足球改革的總體方案》,這是中國(guó)足球歷史上的重大改革.為了進(jìn)一步普及足球知識(shí),傳播足球文化,我市舉行了“足球進(jìn)校園”知識(shí)競(jìng)賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

獲獎(jiǎng)等次

頻數(shù)

頻率

一等獎(jiǎng)

10

0.05

二等獎(jiǎng)

20

0.10

三等獎(jiǎng)

30

b

優(yōu)勝獎(jiǎng)

a

0.30

鼓勵(lì)獎(jiǎng)

80

0.40


請(qǐng)根據(jù)所給信息,解答下列問題:
(1)a= , b= , 且補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計(jì)圖來描述獲獎(jiǎng)分布情況,問獲得優(yōu)勝獎(jiǎng)對(duì)應(yīng)的扇形圓心角的度數(shù)是多少?
(3)在這次競(jìng)賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級(jí)競(jìng)賽,請(qǐng)用樹狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在AC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.

(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系;
(2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)為了解學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,

組別

課堂發(fā)言次數(shù)n

A

0≤n<3

B

3≤n<6

C

6≤n<9

D

9≤n<12

E

12≤n<15

F

15≤n<18


請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
(1)樣本容量是 , 并補(bǔ)全直方圖
(2)該年級(jí)共有學(xué)生800人,請(qǐng)估計(jì)該年級(jí)在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)言的學(xué)生中恰好有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫報(bào)告,請(qǐng)用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號(hào)和π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品廠計(jì)劃一周生產(chǎn)工藝品2100個(gè),平均每天生產(chǎn)300個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃相比有出入.下表是某周的生產(chǎn)情況 (超產(chǎn)記為正,減產(chǎn)記為負(fù)):

(1) 寫出該廠星期一生產(chǎn)工藝品的數(shù)量.

(2) 本周產(chǎn)量最多的一天比最少的一天多生產(chǎn)多少個(gè)工藝品?

(3) 請(qǐng)求出該工藝品廠在本周實(shí)際生產(chǎn)工藝品的數(shù)量.

(4) 已知該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一個(gè)工藝品可得60元,若超額完成任務(wù),則超過部分每個(gè)可得50元,少生產(chǎn)一個(gè)扣80元.試求該工藝廠在這一周應(yīng)付出的工資總額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作詳解九章算法中提出楊輝三角如圖,此圖揭示了為非負(fù)整數(shù)展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.

例如:,它只有一項(xiàng),系數(shù)為1;系數(shù)和為1;

,它有兩項(xiàng),系數(shù)分別為1,1,系數(shù)和為2;

,它有三項(xiàng),系數(shù)分別為1,2,1,系數(shù)和為4;

,它有四項(xiàng),系數(shù)分別為1,3,3,1,系數(shù)和為8;,

的展開式共有______項(xiàng),系數(shù)和為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】算經(jīng)十書是指漢唐一千多年間的十部著名數(shù)學(xué)著作,它們?cè)?jīng)是隋唐時(shí)期國(guó)子監(jiān)算學(xué)科的教科書,這些流傳下來的古算書中凝聚著歷代數(shù)學(xué)家的勞動(dòng)成果.下列四部著作中,不屬于我國(guó)古代數(shù)學(xué)著作的是( 。

A. 《九章算術(shù)》 B. 《幾何原本》

C. 《海島算經(jīng)》 D. 《周髀算經(jīng)》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的圖象反映的過程是:小強(qiáng)星期天從家跑步去體育場(chǎng),在那里鍛煉了一會(huì)兒后又走到文具店去買筆,然后步行回家,其中x表示時(shí)間,y表示小強(qiáng)離家的距離,根據(jù)圖象回答下列問題.

(1)體育場(chǎng)離小強(qiáng)家有多遠(yuǎn)?小強(qiáng)從家到體育場(chǎng)用了多長(zhǎng)時(shí)間?

(2)體育場(chǎng)距文具店多遠(yuǎn)?

(3)小強(qiáng)在文具店逗留了多長(zhǎng)時(shí)間?

(4)小強(qiáng)從文具店回家的平均速度是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案