如圖,四邊形ABCD中,對角線AC與BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意選取兩個作為條件,“四邊形ABCD是平行四邊形”為結(jié)論構(gòu)成命題.
(1)以①②作為條件構(gòu)成的命題是真命題嗎?若是,請證明;若不是,請舉出反例;
(2)寫出按題意構(gòu)成的所有命題中的假命題,并舉出反例加以說明.(命題請寫成“如果…,那么….”的形式)
(1)根據(jù)平行得出相似三角形,推出比例式,即可求出OB=OD,(或用全等)根據(jù)平行四邊形的判定推出即可。
(2)根據(jù)等腰梯形和平行四邊形的判定判斷即可。
【解析】
分析:(1)根據(jù)平行得出相似三角形,推出比例式,即可求出OB=OD,(或用全等)根據(jù)平行四邊形的判定推出即可。
(2)根據(jù)等腰梯形和平行四邊形的判定判斷即可。
解:(1)以①②作為條件構(gòu)成的命題是真命題,證明如下:
∵AB∥CD, ∴△AOB∽△COD!。
∵AO=OC,∴OB=OD。
∴四邊形ABCD是平行四邊形。
(2)ⅰ)根據(jù)①③作為條件構(gòu)成的命題是假命題,即:如果有一組對邊平行,而另一組對邊相等的四邊形時平行四邊形,如等腰梯形符合,但不是平行四邊形;
ⅱ)根據(jù)②③作為條件構(gòu)成的命題是假命題,即:如果一個四邊形ABCD的對角線交于O,且OA=OC,AD=BC,那么這個四邊形時平行四邊形,如圖,根據(jù)已知不能推出OB=OD或AD∥BC或AB=DC,即四邊形不是平行四邊形。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com