【題目】解不等式2x﹣1> ,并把它的解集在數(shù)軸上表示出來(lái).

【答案】解:去分母,得:4x﹣2>3x﹣1,
移項(xiàng),得:4x﹣3x>2﹣1,
合并同類(lèi)項(xiàng),得:x>1,
將不等式解集表示在數(shù)軸上如圖:

【解析】根據(jù)分式的基本性質(zhì)去分母、去括號(hào)、移項(xiàng)可得不等式的解集,再根據(jù)“大于向右,小于向左,包括端點(diǎn)用實(shí)心,不包括端點(diǎn)用空心”的原則在數(shù)軸上將解集表示出來(lái).本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù)不等號(hào)方向要改變.
【考點(diǎn)精析】本題主要考查了不等式的解集在數(shù)軸上的表示和一元一次不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫(huà)數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫(huà),小于向左畫(huà),等于用實(shí)心圓點(diǎn),不等于用空心圓圈;步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類(lèi)項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問(wèn)題)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,ADBC,垂足為點(diǎn)DAN是△ABC外角∠CAM的平分線,CEAN,垂足為點(diǎn)E,

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B的坐標(biāo)為(3,4),D是OA的中點(diǎn),點(diǎn)E在AB上,當(dāng)△CDE的周長(zhǎng)最小時(shí),點(diǎn)E的坐標(biāo)為( 。

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=10,∠B=60°,點(diǎn)D、E分別在AB、BC上,且BD=BE=4,將△BDE沿DE所在直線折疊得到△B′DE(點(diǎn)B′在四邊形ADEC內(nèi)),連接AB′,則AB′的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)B(2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角中,,,ADCE分別是的平分線,AD,CE相交于點(diǎn)F

的度數(shù);

判斷FEFD之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由幾個(gè)相同的邊長(zhǎng)為1的小立方塊搭成的幾何體

(1)請(qǐng)畫(huà)出這個(gè)幾何體的三視圖;

(2)根據(jù)三視圖,這個(gè)幾何體的表面積為 個(gè)平方單位(包括底面積);

(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成的幾何體的表面積最大為 個(gè)平方單位(包括底面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案