【題目】某區(qū)招聘新教師即將進(jìn)入面試環(huán)節(jié),除了從外區(qū)抽調(diào)部分評(píng)委之外,還打算從本區(qū)教學(xué)專家?guī)熘忻块T學(xué)科再隨機(jī)抽取2人,共同組成評(píng)委團(tuán)隊(duì)擔(dān)任面試工作.已知該區(qū)初中數(shù)學(xué)學(xué)科專家?guī)熘泄灿?/span>6名候選人:楊老師(女)、王老師(男),陳老師(女)、周老師(男)、王老師(女)、李老師(女).由于李老師(女)有直系親屬參加面試需回避,所以本區(qū)的2名初中數(shù)學(xué)學(xué)科評(píng)委只能在其余5人中隨機(jī)產(chǎn)生.請(qǐng)用畫樹狀圖法或列表法等方式求出所抽取的2名評(píng)委恰好是都是女教師的概率.

【答案】

【解析】

畫樹狀圖列出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再利用概率公式計(jì)算可得.

分別記楊老師(女)、王老師(男),陳老師(女)、周老師(男)、王老師(女)為A、B、C、D、E,畫樹狀圖,得

∵共有20種等可能的結(jié)果,其中符合題意的情況有6種,

P(所抽取的2名評(píng)委恰好是都是女教師)=,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx24的圖象與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn).一次函數(shù)ymx+2的圖象經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D

1)求直線AD的函數(shù)表達(dá)式;

2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C.若新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC平行于直線AD,且當(dāng)1≤x≤3時(shí),新拋物線對(duì)應(yīng)的函數(shù)值有最小值為﹣1,求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

3)如圖,連接AC、BC,在坐標(biāo)平面內(nèi),直接寫出使得ACDEBC相似(其中點(diǎn)A與點(diǎn)E是對(duì)應(yīng)點(diǎn))的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表顯示了同學(xué)們用計(jì)算機(jī)模擬隨機(jī)投針實(shí)驗(yàn)的某次實(shí)驗(yàn)的結(jié)果.

投針次數(shù)n

1000

2000

3000

4000

5000

10000

20000

針與直線相交的次數(shù)m

454

970

1430

1912

2386

4769

9548

針與直線相交的頻率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三個(gè)推斷:

①投擲1000次時(shí),針與直線相交的次數(shù)是454,針與直線相交的概率是0.454;

②隨著實(shí)驗(yàn)次數(shù)的增加,針與直線相交的頻率總在0.477附近,顯示出一定的穩(wěn)定性,可以估計(jì)針與直線相交的概率是0.477;

③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)投擲次數(shù)為10000時(shí),針與直線相交的頻率一定是0.4769

其中合理的推斷的序號(hào)是:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線ACBD相交于點(diǎn)O,∠ACB的平分線分別交AB、BD于點(diǎn)M、N,若AD4,則線段AM的長為( 。

A. 2B. 2C. 4D. 84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,如果一個(gè)矩形的寬與長之比為,那么這個(gè)矩形就稱為黃金矩形.如圖,已知A、B兩點(diǎn)都在反比例函數(shù)yk0)位于第一象限內(nèi)的圖像上,過A、B兩點(diǎn)分別作坐標(biāo)軸的垂線,垂足分別為C、DE、F,設(shè)ACBF交于點(diǎn)G,已知四邊形OCADCEBG都是正方形設(shè)FG、OC的中點(diǎn)分別為P、Q,連接PQ.給出以下結(jié)論:①四邊形ADFG為黃金矩形;②四邊形OCGF為黃金矩形;③四邊形OQPF為黃金矩形.以上結(jié)論中,正確的是(

A. B. C. ②③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)PBC邊上一動(dòng)點(diǎn),連結(jié)AP,AP的垂直平分線交BD于點(diǎn)G,交 AP于點(diǎn)E,在P點(diǎn)由B點(diǎn)到C點(diǎn)的運(yùn)動(dòng)過程中,APG的大小變化情況是( )

A. 變大 B. 先變大后變小 C. 先變小后變大 D. 不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtPMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCDAB=2cm,BC=10cm,點(diǎn)C和點(diǎn)M重合,點(diǎn)B、C(M)、N在同一直線上,令RtPMN不動(dòng),矩形ABCD沿MN所在直線以每秒1cm的速度向右移動(dòng),至點(diǎn)C與點(diǎn)N重合為止,設(shè)移動(dòng)x秒后,矩形ABCDPMN重疊部分的面積為y,則yx的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+3的圖象經(jīng)過A(﹣1,0)、C3,0)、并且與y軸相交于點(diǎn)B,點(diǎn)P是直線BC上方的拋物線上的一動(dòng)點(diǎn),PQy軸交直線BC于點(diǎn)Q

1)求此二次函數(shù)的表達(dá)式;

2)求線段PQ的最大值;

3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù),當(dāng)時(shí),函數(shù)有最大值.

(1)求此二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn);

(2)將函數(shù)圖象軸下方部分沿軸向上翻折,得到的新圖象,若點(diǎn)是翻折得到的拋物線弧部分上任意一點(diǎn),若關(guān)于的一元二次方程恒有實(shí)數(shù)根時(shí),求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案