如圖,在直角坐標(biāo)系中,直線AB經(jīng)點P(3,4),與坐標(biāo)軸正半軸相交于A,B兩點,當(dāng)△AOB的面積最小時,△AOB的內(nèi)切圓的半徑是( 。                                                                         

                                                                          

A.2                            B.3.5                          C.              D.4

                                                                                                       


A【考點】三角形的內(nèi)切圓與內(nèi)心;坐標(biāo)與圖形性質(zhì).                                   

【專題】壓軸題;探究型.                                                                     

【分析】設(shè)直線AB的解析式是y=kx+b,把P(3,4)代入求出直線AB的解析式是y=kx+4﹣3k,求出OA=4﹣3k,OB=,求出△AOB的面積是OBOA=12﹣=12﹣(9k+),根據(jù)﹣9k﹣≥2=24和當(dāng)且僅當(dāng)﹣9k=﹣時,取等號求出k=﹣,求出OA=4﹣3k=8,OB==6,設(shè)三角形AOB的內(nèi)切圓的半徑是R,由三角形面積公式得:×6×8=×6R+×8R+×10R,求出即可.                                               

【解答】解:設(shè)直線AB的解析式是y=kx+b,                                         

把P(3,4)代入得:4=3k+b,                                                              

b=4﹣3k,                                                                                          

即直線AB的解析式是y=kx+4﹣3k,                                                       

當(dāng)x=0時,y=4﹣3k,                                                                        

當(dāng)y=0時,x=,                                                                            

即A(0,4﹣3k),B(,0),                                                    

△AOB的面積是OBOA=(4﹣3k)=12﹣=12﹣(9k+),                   

∵要使△AOB的面積最小,                                                                     

∴必須最大,                                                                       

∵k<0,                                                                                            

∴﹣k>0,                                                                                        

∵﹣9k﹣≥2=2×12=24,                                                     

當(dāng)且僅當(dāng)﹣9k=﹣時,取等號,解得:k=±,                                            

∵k<0,                                                                                            

∴k=﹣,                                                                                         

即OA=4﹣3k=8,OB==6,                                                            

根據(jù)勾股定理得:AB=10,                                                                      

設(shè)三角形AOB的內(nèi)切圓的半徑是R,                                                      

由三角形面積公式得:×6×8=×6R+×8R+×10R,                                    

R=2,                                                                                                

故選A.                                                                                            

【點評】本題考查了勾股定理,取最大值,三角形的面積,三角形的內(nèi)切圓等知識點的應(yīng)用,關(guān)鍵是求OA和OB的值,本題比較好,但是有一定的難度.                                                              

                                                                                                       


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


在如圖所示的數(shù)軸上,點B與點C關(guān)于點A對稱,A、B兩點對應(yīng)的實數(shù)分別是和﹣1,則點C所對應(yīng)的實數(shù)是(     )

A.1+       B.2+       C.2﹣1   D.2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


先化簡,再求值:,其中x=﹣1.                  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.                                                 

(1)求BD的長;                                                                             

(2)若△DCN的面積為2,求四邊形ABNM的面積.                                   

                                                               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k=      .                                             

                                                                   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC與△DEF是位似圖形,位似比為2:3,已知AB=4,則DE的長等于(  )               

                                                                          

A.6                            B.5                            C.9                            D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知長方形周長為20.

(1)寫出長y關(guān)于寬x的函數(shù)解析式(x為自變量);

(2)在直角坐標(biāo)系中,畫出函數(shù)圖像.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知正比例函數(shù)y=(k+5)x,且y隨x的增大而減小,則k的取值范圍是

A.k>5           B.k<5              C.k>-5             D.k<-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


;               (

查看答案和解析>>

同步練習(xí)冊答案