【題目】2019年第六屆世界互聯(lián)網(wǎng)大會(huì)在烏鎮(zhèn)召開,小南和小西參加了某分會(huì)場的志愿服務(wù)工作,本次志愿服務(wù)工作一共設(shè)置了三個(gè)崗位,分別是引導(dǎo)員、聯(lián)絡(luò)員和咨詢員.請(qǐng)你用畫樹狀圖或列表法求出小南和小西恰好被分配到同一個(gè)崗位進(jìn)行志愿服務(wù)的概率.

【答案】

【解析】

分別用字母A,B,C代替引導(dǎo)員、聯(lián)絡(luò)員和咨詢員崗位,利用列表法求出所有等可能結(jié)果,再根據(jù)概率公式求解可得.

分別用字母A,B,C代替引導(dǎo)員、聯(lián)絡(luò)員和咨詢員崗位,用列表法列舉所有可能出現(xiàn)的結(jié)果:

小西

小南

A

B

C

A

A,A

A,B

A,C

B

B,A

B,B

B,C

C

C,A

C,B

CC

由表中可以看出,所有可能的結(jié)果有9種,并且這9種結(jié)果出現(xiàn)的可能性相等,所有可能的結(jié)果中,小南和小西恰好被分配到同一個(gè)崗位的結(jié)果有3種,即AA,BB,CC,

∴小南和小西恰好被分配到同一個(gè)崗位進(jìn)行志愿服務(wù)的概率=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC10BC16,點(diǎn)DBC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合).以D為頂點(diǎn)作∠ADE=∠B,射線DEAC邊于點(diǎn)E,過點(diǎn)AAFAD交射線DE于點(diǎn)F

1)求證:ABCEBDCD;

2)當(dāng)DF平分∠ADC時(shí),求AE的長;

3)當(dāng)△AEF是等腰三角形時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx22mx+m21y軸交于點(diǎn)C

1)試用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

2)將拋物線yx22mx+m21沿直線y=﹣1翻折,得到的新拋物線與y軸交于點(diǎn)D,若m0,CD8,求m的值.

3)已知A(﹣k+41),B1k2),在(2)的條件下,當(dāng)線段AB與拋物線yx22mx+m21只有一個(gè)公共點(diǎn)時(shí),請(qǐng)求出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個(gè)矩形場地.

(1)怎樣圍才能使矩形場地的面積為750m2?

(2)能否使所圍矩形場地的面積為810m2 ,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知:如圖所示的一張矩形紙片ABCDAD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EFAD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AFCE

1)求證:四邊形AFCE是菱形;

2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長;

3)在線段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?若存在,請(qǐng)說明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx22mx+m21

1)求拋物線頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);

2)已知點(diǎn)A0,3),B2,3),若該拋物線與線段AB有公共點(diǎn),結(jié)合函數(shù)圖象,求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),與軸交于點(diǎn)頂點(diǎn)為

求拋物線的解析式;

的度數(shù);

若點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),過軸交拋物線于點(diǎn),交軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

①求線段的最大值;

②若是等腰三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角度,使點(diǎn)O的對(duì)應(yīng)點(diǎn)D落在弧上.點(diǎn)B的對(duì)應(yīng)點(diǎn)為C.連接BC.則BC的長度是( 。

A.4B.C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)“傳統(tǒng)文化進(jìn)校園”活動(dòng),我市某中學(xué)舉行了“走進(jìn)經(jīng)典”征文比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為四個(gè)等級(jí),并將結(jié)果繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)參加征文比賽的學(xué)生共有 人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,表示等級(jí)的扇形的圓心角為__ 圖中 ;

4)學(xué)校決定從本次比賽獲得等級(jí)的學(xué)生中選出兩名去參加市征文比賽,已知等級(jí)中有男生一名,女生兩名,請(qǐng)用列表或畫樹狀圖的方法求出所選兩名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案