【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連接BF,CE,下列說法中正確的個數(shù)是( 。
①CE=BF;②△ABD和△ADC的面積相等;③BF∥CE;④CE,BF均與AD垂直
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】
根據(jù)已知條件已證△BDF≌△CDE,根據(jù)全等三角形的性質(zhì)可判定①正確;由△BDF≌△CDE可得∠CED=∠BFD,∠CED與∠BFD不一定是直角,即故CE,BF均與AD不一定垂直,可判定④錯誤;根據(jù)三角形中線的性質(zhì)可判定②正確;由△BDF≌△CDE,可知∠FBD=∠ECD,所以BF∥CE,即可判定③正確.
解:∵AD是△ABC的中線,
∴BD=CD,又∠CDE=∠BDF,DE=DF,
∴△BDF≌△CDE(SAS),
∴∠CED=∠BFD,但不一定是直角,即故CE,BF均與AD不一定垂直,故④錯誤;
由△BDF≌△CDE,可知CE=BF,故①正確;
∵AD是△ABC的中線,
∴△ABD和△ACD等底等高,
∴△ABD和△ACD面積相等,故②正確;
由△BDF≌△CDE,可知∠FBD=∠ECD
∴BF∥CE,故③正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法,正確的是( )
A. 若ac=bc,則a=b
B. 30.15°=30°15′
C. 一個圓被三條半徑分成面積比2:3:4的三個扇形,則最小扇形的圓心角為90°
D. 鐘表上的時間是9點40分,此時時針與分針?biāo)傻膴A角是50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是( )
A.①②③④
B.③④
C.①③④
D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標(biāo)系 xOy 中,A(2,3),B(3,1),C(﹣2,﹣1).
①在圖中作出△ABC 關(guān)于 x 軸的對稱圖形△A1B1C1 并寫出 A1,B1,C1 的坐標(biāo);
②在 y 軸上畫出點 P,使 PA+PB 最。ú粚懽鞣,保留作圖痕跡)
③求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)、B(3,0).
(1)求b、c的值;
(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點,交y軸于F點,交線段BC于E點.求 的最大值;
(3)如圖2,拋物線的對稱軸與拋物線交于點P、與直線BC相交于點M,連接PB.問在直線BC下方的拋物線上是否存在點Q,使得△QMB與△PMB的面積相等?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡 旁一棵樹 的高度,他們先在點 處測得樹頂 的仰角為 ,然后在坡頂 測得樹頂 的仰角為 ,已知斜坡 的長度為 , 的長為 ,則樹 的高度是( )
A.
B.30
C.
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P,Q分別是∠AOB的邊OA,OB上的點.
(1)過點P畫OB的垂線,垂足為H;
(2)過點Q畫OA的垂線,交OA于點C,連接PQ;
(3)線段QC的長度是點Q到 的距離, 的長度是點P到直線OB的距離,因為直線外一點和直線上各點連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關(guān)系是 (用“<”號連接).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com