【題目】如圖:在平行四邊形ABCD中,點(diǎn)E在BA的延長線上,且BE=AD,點(diǎn)F在AD上,AF=AB,求證:CF=EF.
【答案】證明:∵四邊形ABCD是平行四邊形,
∴CD∥AB,CD=AB,
∴∠D=∠EAF,
∵BE=AD,AF=AB,
∴AE=DF,CD=AF,
在△CDF和△FAE中,
,
∴△DCF≌△AFE(SAS),
∴CF=EF.
【解析】由四邊形ABCD是平行四邊形,可得CD∥AB,CD=AB,即可證得∠D=∠EAF,又由BE=AD,AF=AB,易得AE=DF,CD=AF,然后由SAS證得△DCF≌△AFE,即可證得結(jié)論.
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=6,點(diǎn)P是AB邊上的任意一點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),過點(diǎn)P作PD⊥AB,交直線BC于點(diǎn)D,作PE⊥AC,垂足為點(diǎn)F.
(1)求∠APE的度數(shù);
(2)連接DE,當(dāng)△PDE為等邊三角形時(shí),求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市最高氣溫是33℃,最低氣溫是24℃,則該市氣溫t(℃)的變化范圍是()
A. t>33 B. t≤24 C. 24<t<33 D. 24≤t≤33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,有矩形AOBC,點(diǎn)A、B的坐標(biāo)分別為(0,4)、(10,0),點(diǎn)P的坐標(biāo)為(2,0),點(diǎn)M在線段AO上,點(diǎn)N在線段AC上,總有∠MPN=90 ,點(diǎn)M從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A,當(dāng)點(diǎn)M運(yùn)動(dòng)到A點(diǎn)時(shí),點(diǎn)N與點(diǎn)C重合(如圖2)。令AM=x
(1).直接寫出點(diǎn)C的坐標(biāo)___________;
(2)、①設(shè)MN2=y,請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系式,并求出y的最小值;
②連接AP交MN于點(diǎn)D,若MN⊥A P,求x的值;
(3)、當(dāng)點(diǎn)M在邊AO上運(yùn)動(dòng)時(shí),∠PMN的大小是否發(fā)生變化?請(qǐng)說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,哪些適合抽樣調(diào)查?哪些適合全面調(diào)查?
(1)工廠準(zhǔn)備對(duì)一批即將出廠的飲料中含有細(xì)菌總數(shù)的情況進(jìn)行調(diào)查;
(2)小明準(zhǔn)備對(duì)全班同學(xué)所喜愛的球類運(yùn)動(dòng)的情況進(jìn)行調(diào)查;
(3)某農(nóng)田保護(hù)區(qū)對(duì)區(qū)內(nèi)的水稻秧苗的高度進(jìn)行調(diào)查.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=2(x﹣1)2﹣3的頂點(diǎn)坐標(biāo)為( )
A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com