【題目】如圖二次函數(shù)的圖象與y軸正半軸相交,其頂點坐標為()下列結(jié)論正確的是( )
A. abc>0B. a=b
C. a=4c-4D. 方程有兩個不相等的實數(shù)根
科目:初中數(shù)學 來源: 題型:
【題目】企業(yè)舉行“愛心一日捐”活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結(jié)合圖表中的信息解答下列問題:
(1)宣傳小組抽取的捐款人數(shù)為 人,請補全條形統(tǒng)計圖;
(2)統(tǒng)計的捐款金額的中位數(shù)是 元;
(3)在扇形統(tǒng)計圖中,求100元所對應扇形的圓心角的度數(shù);
(4)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解七、八年級學生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數(shù)分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數(shù)、中位數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接十二運,某校開設(shè)了A:籃球,B:毽球,C:跳繩,D:健美操四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機抽取若干名學生,進行問卷調(diào)查(每個被調(diào)查的同學必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共查了 名學生:
(2)請補全兩幅統(tǒng)計圖:
(3)若有3名最喜歡毽球運動的學生,1名最喜歡跳繩運動的學生組隊外出參加一次聯(lián)誼互活動,欲從中選出2人擔任組長(不分正副),求兩人均是最喜歡毽球運動的學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】傳統(tǒng)節(jié)日“端午節(jié)”的早晨,小文媽媽為小文準備了四個粽子作早點:一個棗餡粽,一個肉餡粽,兩個花生餡粽,四個粽子除內(nèi)部餡料不同外,其它一切均相同.
(1)小文吃前兩個粽子剛好都是花生餡粽的概率為 ;
(2)若媽媽在早點中給小文再增加一個花生餡的粽子,則小文吃前兩個粽子都是花生餡粽的可能性是否會增大?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的例題及點撥,并解決問題:
例題:如圖①,在等邊中,是邊上一點(不含端點),是的外角的平分線上一點,且.求證:.
點撥:如圖②,作,與的延長線相交于點,得等邊,連接.易證:,可得;又,則,可得;由,進一步可得又因為,所以,即:.
問題:如圖③,在正方形中,是邊上一點(不含端點),是正方形的外角的平分線上一點,且.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com