問題解決.
如圖,A、B兩點(diǎn)分別位于一個(gè)池塘的兩端,小明想用繩子測(cè)量A、B之間的距離,但繩子不夠長(zhǎng),你能幫他想個(gè)主意測(cè)量嗎?并說明你的理由.用這種方法能解決你身邊的實(shí)際問題嗎?試舉一例說明.
分析:找出一點(diǎn)C,然后連接AC、BC.接著找出AC和BC的中點(diǎn),分別為D和E.連接DE可知線段DE為△ABC的中位線,根據(jù)中位線的性質(zhì)可求出AB的長(zhǎng).
解答:解:①首先在地上取一個(gè)可以直接到A、B的點(diǎn)C,找到AC、BC的中點(diǎn)D、E,連接DE.然后量出DE的長(zhǎng).
②根據(jù)DE的長(zhǎng)以及中位線計(jì)算出AB的長(zhǎng):AB=2DE.

例:測(cè)量假山的寬度:取假山最寬處兩點(diǎn)A、B,再在假山外另取一點(diǎn)O,然后找出AO、BO的中點(diǎn),量出中位線的長(zhǎng)度即可知道假山的寬度.
點(diǎn)評(píng):此題主要考查了三角形中位線定理,學(xué)生要有發(fā)散思維,可用不同的方法求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

25、閱讀下面問題的解決過程:
問題:已知△ABC中,P為BC邊上一定點(diǎn),過點(diǎn)P作一直線,使其等分△ABC的面積.
解決:
情形1:如圖①,若點(diǎn)P恰為BC的中點(diǎn),作直線AP即可.
情形2:如圖②,若點(diǎn)P不是BC的中點(diǎn),則取BC的中點(diǎn)D,連接AP,
過點(diǎn)D作DE∥AP交AC于E,作直線PE,直線PE即為所求直線.
問題解決:
如圖③,已知四邊形ABCD,過點(diǎn)B作一直線(不必寫作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題解決:
如圖(1),將正方形紙片ABCD折疊,使點(diǎn)B落在CD邊上一點(diǎn)E(不與點(diǎn)C,D重合),壓平后得到折痕MN.當(dāng)
CE
CD
=
1
2
時(shí),求
AM
BN
的值.
類比歸納:
在圖(1)中,若
CE
CD
=
1
3
,則
AM
BN
的值等于
 
;若
CE
CD
=
1
4
,則
AM
BN
的值等于
 
;若
CE
CD
=
1
n
(n為整數(shù)),則
AM
BN
的值等于
 
.(用含n的式子表示)
聯(lián)系拓廣:
如圖(2),將矩形紙片ABCD折疊,使點(diǎn)B落在CD邊上一點(diǎn)E(不與點(diǎn)C,D重合),壓平后得到折痕MN,設(shè)
AB
BC
=
1
m
(m>1),
CE
CD
=
1
n
,則
AM
BN
的值等于
 
.(用含m,n的式子表示)
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)數(shù)學(xué)應(yīng)該積極地參加到現(xiàn)實(shí)的、探索的數(shù)學(xué)活動(dòng)中去,努力地成為學(xué)習(xí)的主人.下面,請(qǐng)你探究:隨著P點(diǎn)位置的變化,∠BPC與∠A的大小關(guān)系.(1)、(2)問用“>”表示其關(guān)系,(3)、(4)、(5)用“=”表示其關(guān)系.
1如圖(1),點(diǎn)P在AC上(不同于A、C兩點(diǎn)),∠BPC與∠A的關(guān)系是
 
,用一句話說出你判斷的依據(jù)
 

②如圖(2),點(diǎn)P在△ABC內(nèi)部,∠BPC與∠A的關(guān)系是
 
;
③如圖(3),點(diǎn)P是∠ABC、∠ACB平分線的交點(diǎn),此時(shí)∠BPC與∠A的關(guān)系是
 

④如圖(4),點(diǎn)P是∠ABC平分線和∠ACB外角平分線的交點(diǎn),∠BPC與∠A的關(guān)系是
 

⑤如圖(5),點(diǎn)P是∠ABC與∠ACB兩外角平分線的交點(diǎn),∠BPC與∠A的關(guān)系是
 
;
⑥在上述五種情形中,選擇其中一種情形給予說明理由.
⑦問題解決:
如圖(6),在△ABC中,∠C=90°,點(diǎn)P是∠ABC平分線和∠BAC外角平分線的交點(diǎn),則∠P的度數(shù)為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題解決:如圖是一塊長(zhǎng)方形ABCD的運(yùn)動(dòng)場(chǎng)地,長(zhǎng)AD=101m,寬AB=52m,從B,C兩處入口的兩條小路寬度相等,兩條小路匯合處的路寬為B,C處入口寬的2倍,其余部分種植草坪,若草坪面積為5049m2,求B、C處入口小路的寬.

查看答案和解析>>

同步練習(xí)冊(cè)答案