【題目】某商場(chǎng)甲、乙、丙三名業(yè)務(wù)員5個(gè)月的銷售額(單位:萬(wàn)元)如下表:
月份 | 第1月 | 第2月 | 第3月 | 第4月 | 第5月 |
甲 | 7.2 | 9.6 | 9.6 | 7.8 | 9.3 |
乙 | 5.8 | 9.7 | 9.8 | 5.8 | 9.9 |
丙 | 4 | 6.2 | 8.5 | 9.9 | 9.9 |
(1)根據(jù)上表中的數(shù)據(jù),將下表補(bǔ)充完整:
統(tǒng)計(jì)值 | 平均數(shù)(萬(wàn)元) | 中位數(shù)(萬(wàn)元) | 眾數(shù)(萬(wàn)元) |
甲 | 9.3 | 9.6 | |
乙 | 8.2 | 5.8 | |
丙 | 7.7 | 8.5 |
(2)甲、乙、丙三名業(yè)務(wù)員都說(shuō)自己的銷售業(yè)績(jī)好,你贊同誰(shuí)的說(shuō)法?請(qǐng)說(shuō)明理由.
【答案】
(1)8.7,9.7,9.9
(2)解:我贊同甲的說(shuō)法.甲的平均銷售額比乙、丙都高.
【解析】解:(1) = (7.2+9.6+9.6+7.8+9.3)=8.7(萬(wàn)元)
把乙按照從小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;
中位數(shù)為9.7萬(wàn)元.
丙中出現(xiàn)次數(shù)最多的數(shù)為9.9萬(wàn)元.
所以答案是:8.7,9.7,9.9;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用算術(shù)平均數(shù)和中位數(shù)、眾數(shù)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對(duì)應(yīng)的總份數(shù);中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個(gè),也可能多個(gè),它一定是這組數(shù)據(jù)中的數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測(cè)得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.
(1)填空:b= , c=;
(2)在點(diǎn)P,Q運(yùn)動(dòng)過(guò)程中,△APQ可能是直角三角形嗎?請(qǐng)說(shuō)明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使△PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說(shuō)明理由;
(4)如圖②,點(diǎn)N的坐標(biāo)為(﹣ ,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱點(diǎn)Q′恰好落在線段BC上時(shí),請(qǐng)直接寫出點(diǎn)Q′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)和A(﹣1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線解析式;
(2)點(diǎn)P是拋物線BC段上一點(diǎn),PD⊥BC,PE∥y軸,分別交BC于點(diǎn)D、E.當(dāng)DE= 時(shí),求點(diǎn)P的坐標(biāo);
(3)M是平面內(nèi)一點(diǎn),將符合(2)條件下的△PDE繞點(diǎn)M沿逆時(shí)針方向旋轉(zhuǎn)90°后,點(diǎn)P,D,E的對(duì)應(yīng)點(diǎn)分別是P′、D′、E′.設(shè)P′E′的中點(diǎn)為N,當(dāng)拋物線同時(shí)經(jīng)過(guò)D′與N時(shí),求出D′的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,A(-1,5)、B(-1,0),C(-4,3).
(1)△ABC的面積是 .
(2)在下圖中畫出△ABC向下平移2個(gè)單位,向右平移5個(gè)單位后的△A1B1C1.
(3)寫出點(diǎn)A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)函數(shù)的圖象如圖所示,給出以下結(jié)論:①當(dāng)x=0時(shí),函數(shù)值最大;②當(dāng)0<x<2時(shí),函數(shù)y隨x的增大而減小;③當(dāng)x<0時(shí),函數(shù)y隨x的增大而增大;④存在0<a<1,當(dāng)x=a時(shí),函數(shù)值為0.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)老師在課堂上提出一個(gè)問(wèn)題:“通過(guò)探究知道:≈1.414…,它是個(gè)無(wú)限不循環(huán)小數(shù),也叫無(wú)理數(shù),它的整數(shù)部分是1,那么有誰(shuí)能說(shuō)出它的小數(shù)部分是多少”,小明舉手回答:它的小數(shù)部分我們無(wú)法全部寫出來(lái),但可以用﹣1來(lái)表示它的小數(shù)部分,張老師夸獎(jiǎng)小明真聰明,肯定了他的說(shuō)法.現(xiàn)請(qǐng)你根據(jù)小明的說(shuō)法解答:
(1)的小數(shù)部分是a,的整數(shù)部分是b,求a+2b﹣的值.
(2)已知6+=x+y,其中x是一個(gè)整數(shù),0<y<1,求2x+(y﹣)2018的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com