【題目】閱讀材料,回答問(wèn)題.
材料:為解方程x4-x2-6=0,可將方程變形為(x2)2-x2-6=0,然后設(shè)x2=y(tǒng),則(x2)2=y(tǒng)2,原方程化為y2-y-6=0①,
解得y1=-2,y2=3.
當(dāng)y1=-2時(shí),x2=-2無(wú)意義,舍去;當(dāng)y2=3時(shí),x2=3,解得x=±.
所以,原方程的解為x1=,x2=-.
問(wèn)題:
(1)在由原方程得到方程①的過(guò)程中,利用 法達(dá)到了降次的目的,體現(xiàn)了 的數(shù)學(xué)思想;
(2)利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.
【答案】(1)換元,轉(zhuǎn)化;(2)原方程的解為x1=-2,x2=3.
【解析】
(1)通過(guò)閱讀材料就可以得出材料中的解法是采用的換元降次的方法從而可以得出結(jié)論;
(2)設(shè)x2-x=y,將原方程變形為y2-4y-12=0,求出y的值,就可以求出x的值.
(1)由題意得:換元,轉(zhuǎn)化,
故答案為:換元,轉(zhuǎn)化;
(2)令x2-x=y(tǒng),則原方程可化為y2-4y-12=0,即(y+2)(y-6)=0,
所以y+2=0或y-6=0,解得y1=-2,y2=6,
當(dāng)y1=-2時(shí),x2-x=-2,即x2-x+2=0,此方程無(wú)實(shí)數(shù)根;
當(dāng)y2=6時(shí),x2-x=6,(x+2)(x-3)=0,解得x1=-2,x2=3,
所以,原方程的解為x1=-2,x2=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)AB與軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線(xiàn)OC:交于點(diǎn)C.
(1)若直線(xiàn)AB解析式為,
①求點(diǎn)C的坐標(biāo);
②求△OAC的面積.
(2)如圖2,作的平分線(xiàn)ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線(xiàn)段OA、OE上的動(dòng)點(diǎn),連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD平分∠BAC,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,且BD=CD.
(1)圖中與△BDE全等的三角形是 ,請(qǐng)加以證明;
(2)若AE=6 cm,AC=4 cm,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知∠MPN的角平分線(xiàn)PF經(jīng)過(guò)圓心O交⊙O于點(diǎn)E、F,PN是⊙O的切線(xiàn),B為切點(diǎn).
(1)求證:PM也是⊙O的切線(xiàn);
(2)如圖2,在(1)的前提下,設(shè)切線(xiàn)PM與⊙O的切點(diǎn)為A,連接AB交PF于點(diǎn)D;連接AO交⊙O于點(diǎn)C,連接BC,AF;記∠PFA為∠α.
①若BC=6,tan∠α=,求線(xiàn)段AD的長(zhǎng);
②小華探究圖2之后發(fā)現(xiàn):EF2=mODOP(m為正整數(shù)),請(qǐng)你猜想m的數(shù)值?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列材料,然后回答問(wèn)題:
在關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中,若各項(xiàng)的系數(shù)之和為零,即a+b+c=0,則有一根為1,另一根為.
證明:設(shè)方程的兩根為x1,x2,由a+b+c=0,知b=-(a+c),
∵x==,
∴x1=1,x2=.
(1)若一元二次方程ax2+bx+c=0(a≠0)的各項(xiàng)系數(shù)滿(mǎn)足a-b+c=0,請(qǐng)直接寫(xiě)出此方程的兩根;
(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有兩個(gè)相等的實(shí)數(shù)根,運(yùn)用上述結(jié)論證明:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料1:
對(duì)于兩個(gè)正實(shí)數(shù),由于,所以,即,所以得到,并且當(dāng)時(shí),
閱讀材料2:
若,則 ,因?yàn)?/span>,,所以由閱讀材料1可得:,即的最小值是2,只有時(shí),即=1時(shí)取得最小值.
根據(jù)以上閱讀材料,請(qǐng)回答以下問(wèn)題:
(1)比較大小
(其中≥1); -2(其中<-1)
(2)已知代數(shù)式變形為,求常數(shù)的值
(3)當(dāng)= 時(shí),有最小值,最小值為 (直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的邊上異于、一點(diǎn),過(guò)點(diǎn)作直線(xiàn)截得的三角形與相似,那么這樣的直線(xiàn)可以作的條數(shù)是( )
A. 1條 B. 2條 C. 3條 D. 4條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G.
(1)猜想BG與EG的數(shù)量關(guān)系.并說(shuō)明理由;
(2)延長(zhǎng)DE,BA交于點(diǎn)H,其他條件不變,
①如圖2,若∠ADC=60°,求的值;
②如圖3,若∠ADC=α(0°<α<90°),直接寫(xiě)出的值.(用含α的三角函數(shù)表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com