已知如圖,△ABC中,AC=BC,BC與x軸平行,點A在x軸上,點C在y軸上,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,
(1)求出該拋物線的解析式;
(2)若直線y=kx+7將四邊形ACBD面積平分,求此直線的解析式;
(3)若直線y=kx+b將四邊形ACBD的周長和面積同時分成相等的兩部分,請你確定y=kx+b中k的取值范圍.(直接寫出答案)

【答案】分析:(1)根據(jù)已知拋物線,利用對稱軸公式代入數(shù)據(jù)即可得出對稱軸,同時也可以得出C點的坐標,利用AC=BC,即可得出A點的坐標和B點的坐標,代入拋物線方程即可得出a的值,即得出該拋物線的解析式;
(2)結合題意,可知直線一定經(jīng)過OB的中點P.又已知P點的坐標,代入直線方程,即可得出k的值,從而得出直線的方程;
(3)同(2);
解答:解:(1)由題意可知,拋物線的對稱軸為:
與y軸交點為c(0,4)
∴A(-3,0);B(5,4).(1分)
把A(-3,0)代入y=ax2-5ax+4得:9a+15a+4=0(2分)
解之得:
;(3分)

(2)直線y=kx+7將四邊形ACBD面積平分,則直線一定經(jīng)過OB的中點P.
根據(jù)題意可求P點坐標為()(4分)
把P()代入y=kx+7得:k=-2,
∴直線的解析式為:y=-2x+7;(5分)

(3).(7分)
點評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點有拋物線的頂點公式和三角形的面積求法.在求有關動點問題時要注意分析題意分情況討論結果.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,△ABC中,∠ACB=90°,△BCD中,∠D=90°,CD=BD,又AC=6,tan∠ABC=
12
.求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、已知如圖,△ABC中,D在BC上,且∠1=∠2,請你在空白處填一個適當?shù)臈l件:當
∠B=∠C(或∠ADB=∠ADC或 AD⊥BC或AB=AC)
時,則有△ABD≌△ACD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,△ABC中,BD⊥AC于D,tanA=
12
,BD=3,AC=10.求sinC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖在△ABC中,∠ACB=90°,CD⊥AB于D,∠A的平分線交CD于F,BC于E,過點E作EH⊥AB于H.求證:EC=CF=EH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖:△ABC中,AB=AC,BE=CD,BD=CF,則∠EDF=( 。

查看答案和解析>>

同步練習冊答案