甲、乙、丙三個工人每天所生產(chǎn)的機器零件數(shù)的情況為:甲和乙的比為2:3,乙和丙的比是4:5.若甲、乙、丙每天共生產(chǎn)零件1 575個,則每天每個工人各生產(chǎn)多少個機器零件?
分析:設乙每天生產(chǎn)零件x個,則甲每天生產(chǎn)零件
2
3
x個,丙每天生產(chǎn)零件
5
4
x個,就有甲、乙、丙每天生產(chǎn)x+
2
3
x+
5
4
x=1575個,求出方程的解即可.
解答:解:設乙每天生產(chǎn)零件x個,則甲每天生產(chǎn)零件
2
3
x個,丙每天生產(chǎn)零件
5
4
x個,由題意,得
x+
2
3
x+
5
4
x=1575,
解得:x=540,
∴甲每天生產(chǎn)零件
2
3
×540=360(個),
丙每天生產(chǎn)零件
5
4
×540=675(個),
答:甲每天生產(chǎn)零件360個,乙每天生產(chǎn)零件540個,丙每天生產(chǎn)零件675個.
點評:本題考查了工程問題的數(shù)量關系在實際問題中的運用,比例問題在解實際問題中的運用,解答時由甲、乙、丙每天共生產(chǎn)零件1575個建立方程是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、某工廠有一種材料,可加工甲、乙、丙三種型號機械配件共240個.廠方計劃由20個工人一天內(nèi)加工完成,并要求每人只加工一種配件.根據(jù)下表提供的信息,解答下列問題:
配件種類
每人可加工配件的數(shù)量(個) 16 12 10
每個配件獲利(元) 6 8 5
(1)設加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,求y與x之間的函數(shù)關系式.
(2)如果加工每種配件的人數(shù)均不少于3人,那么加工配件的人數(shù)安排方案有幾種?并寫出每種安排方案.
(3)要使此次加工配件的利潤最大,應采用(2)中哪種方案?并求出最大利潤值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某工廠有一種材料,可加工甲、乙、丙三種型號機械配件共240件,廠方計劃由20個工人一天內(nèi)加工完成,并要求每人只加工一種配件,根據(jù)下表提供的信息,解答下列問題:

配件種類

每人可加工配件的數(shù)量(個)

16

12

10

每個配件獲利(元)

6

8

5

(1)設加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,求y與x之間的函數(shù)關系式

(2)如果加工每種配件的人數(shù)均不少于3人,那么加工配件的人數(shù)安排方案有幾種?并寫出每種安排方案

(3)要使此次加工配件的利潤最大,應采用哪種方案?最大利潤是多少?

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某工廠有一種材料,可加工甲、乙、丙三種型號機械配件共240件,廠方計劃由20個工人一天內(nèi)加工完成,并要求每人只加工一種配件,根據(jù)下表提供的信息,解答下列問題:
配件種類



每人可加工配件的數(shù)量(個)
16
12
10
每個配件獲利(元)
6
8
5
(1)設加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,求y與x之間的函數(shù)關系式
(2)如果加工每種配件的人數(shù)均不少于3人,那么加工配件的人數(shù)安排方案有幾種?并寫出每種安排方案
(3)要使此次加工配件的利潤最大,應采用哪種方案?最大利潤是多少?
 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省東臺市九年級下學期學情調(diào)查(一)數(shù)學卷 題型:解答題

(本題滿分12分) 某工廠有一種材科,可加工甲、乙、丙三種型號機械配件共240個.廠方計劃由20個工人一天內(nèi)加工完成.并要求每人只加工一種配件.根據(jù)下表提供的信息。解答下列問題:

(1)設加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,求y與x之間的函數(shù)關系式。

(2)如果加工每種配件的人數(shù)均不少于3人.那么加工配件的人數(shù)安排方案有幾種?寫出每種安排方案.

(3)要使此次加工配件的利潤最大,應采用(2)中哪種方案?并求出最大利潤值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖南岳陽卷)數(shù)學 題型:解答題

某工廠有一種材料,可加工甲、乙、丙三種型號機械配件共240件,廠方計劃由20個工人一天內(nèi)加工完成,并要求每人只加工一種配件,根據(jù)下表提供的信息,解答下列問題:

配件種類

每人可加工配件的數(shù)量(個)

16

12

10

每個配件獲利(元)

6

8

5

(1)設加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,求y與x之間的函數(shù)關系式

(2)如果加工每種配件的人數(shù)均不少于3人,那么加工配件的人數(shù)安排方案有幾種?并寫出每種安排方案

(3)要使此次加工配件的利潤最大,應采用哪種方案?最大利潤是多少?

 

 

 

 

查看答案和解析>>

同步練習冊答案