一只排球從P點(diǎn)打過(guò)球網(wǎng)MN,已知該排球飛行距離x(米)與其距地面高度y(米)之間的關(guān)系式為y=-
1
12
x2+
2
3
x+
3
2
(如圖).已知球網(wǎng)MN距原點(diǎn)5米,運(yùn)動(dòng)員(用線段AB表示)準(zhǔn)備跳起扣球.已知該運(yùn)動(dòng)員扣球的最大高度為
9
4
米,設(shè)他扣球的起跳點(diǎn)A的橫坐標(biāo)為k,因球的高度高于他扣球的最大高度而導(dǎo)致扣球失敗,則k的取值范圍是______.
把A的橫坐標(biāo)為k代入函數(shù)解析式,再由該運(yùn)動(dòng)員扣球的最大高度為
9
4
米,列出不等式得,
-
1
12
k2+
2
3
k+
3
2
9
4
,
解出不等式得4-
7
<k<4+
7
,
又因A點(diǎn)在MN的右側(cè),且MN距原點(diǎn)5米,所以k的取值范圍是5<k<4+
7

故填5<k<4+
7
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知:拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,A、B兩點(diǎn)的坐標(biāo)分別為A(-6,0)、B(2,0).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)已知在拋物線的對(duì)稱軸上存在一點(diǎn)P,使得PB+PC的值最小,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過(guò)點(diǎn)D作DEPC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8
2
,D為斜邊BC的中點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)沿線段AB作勻速運(yùn)動(dòng),P′是P關(guān)于AD的對(duì)稱點(diǎn);點(diǎn)Q由點(diǎn)D出發(fā)沿射線DC方向作勻速運(yùn)動(dòng),且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為y,DQ=x.
(1)求出y關(guān)于x的函數(shù)解析式;
(2)求當(dāng)y取最大值時(shí),過(guò)點(diǎn)P,A,P′的二次函數(shù)解析式;
(3)能否在(2)中所求的二次函數(shù)圖象上找一點(diǎn)E使△EPP′的面積為20?若存在,求出E點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,對(duì)稱軸為直線x=1.且A、C兩點(diǎn)的坐標(biāo)分別為A(-1,0),C(0,-3).
(1)求拋物線y=ax2+bx+c的解析式;
(2)在對(duì)稱軸上是否存在一個(gè)點(diǎn)P,使△PAC的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線經(jīng)過(guò)A(-1,0),B(0,-2),C(1,-2),且與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-2,0),點(diǎn)B在x軸的正半軸上,點(diǎn)M在y軸的負(fù)半軸上,且|AB|=6,cos∠OBM=
5
5
,點(diǎn)C是M關(guān)于x軸的對(duì)稱點(diǎn).
(1)求過(guò)A、B、C三點(diǎn)的拋物線的函數(shù)表達(dá)式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,在線段OB的垂直平分線上求一點(diǎn)P,使點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)的O距離;
(3)在直線CD上方(1)中的拋物線(不包括C、D)上是否存在點(diǎn)N,使四邊形NCOD的面積最大?若存在,求出點(diǎn)N的坐標(biāo)及該四邊形面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某隧道橫斷面由拋物線與矩形的三邊組成,尺寸如圖所示.
(1)以隧道橫斷面拋物線的頂點(diǎn)為原點(diǎn),以拋物線的對(duì)稱軸為y軸,建立直角坐標(biāo)系,求該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)某卡車空車時(shí)能通過(guò)此隧道,現(xiàn)裝載一集裝箱箱寬3m,車與箱共高4.5m,此車能否通過(guò)隧道?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=-
4
3
x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、C和點(diǎn)B(-1,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為M,求四邊形AOCM的面積;
(3)有兩動(dòng)點(diǎn)D、E同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)D以每秒
3
2
個(gè)單位長(zhǎng)度的速度沿折線OAC按O?A?C的路線運(yùn)動(dòng),點(diǎn)E以每秒4個(gè)單位長(zhǎng)度的速度沿折線OCA按O?C?A的路線運(yùn)動(dòng),當(dāng)D、E兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)D、E同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△ODE的面積為S.
①請(qǐng)問(wèn)D、E兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在DEOC,若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,那么S0=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過(guò)B(8、0),C(6、2
3
)兩點(diǎn),點(diǎn)A是點(diǎn)C關(guān)于拋物線y=ax2+bx的對(duì)稱軸的對(duì)稱點(diǎn),連接OA、AC、BC

(1)求拋物線的解析式.
(2)動(dòng)點(diǎn)E從點(diǎn)O出發(fā),速度為3個(gè)單位/秒,沿O→A→C勻速運(yùn)動(dòng):動(dòng)點(diǎn)F從點(diǎn)O出發(fā),速度為4個(gè)單位/秒,沿O→B勻速運(yùn)動(dòng),動(dòng)點(diǎn)E、F同時(shí)出發(fā),若設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤2),△OEF的面積為S,請(qǐng)求出運(yùn)動(dòng)過(guò)程中S與t的關(guān)系式.
(3)設(shè)P是拋物線對(duì)稱軸上的一點(diǎn),是否存在點(diǎn)P使以O(shè)、E、F、P為頂點(diǎn)的四邊形是平行四邊形?若不存在,請(qǐng)說(shuō)明理由;若存在,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案