如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為
1
2
1
2
分析:過P作PF∥BC交AC于F,得出等邊三角形APF,推出AP=PF=QC,根據(jù)等腰三角形性質求出EF=AE,證△PFD≌△QCD,推出FD=CD,推出DE=
1
2
AC即可.
解答:解:過P作PF∥BC交AC于F.
∵PF∥BC,△ABC是等邊三角形,
∴∠PFD=∠QCD,△APF是等邊三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ.
∵在△PFD和△QCD中,
∠PFD=∠QCD
∠PDF=∠QDC
PF=CQ
,
∴△PFD≌△QCD(AAS),
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DE=
1
2
AC,
∵AC=1,
∴DE=
1
2

故答案為:
1
2
點評:本題考查了全等三角形的性質和判定,等邊三角形的性質和判定,等腰三角形的性質,平行線的性質等知識點的應用,能綜合運用性質進行推理是解此題的關鍵,通過做此題培養(yǎng)了學生分析問題和解決問題的能力,題型較好,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過邊長為2的等邊△ABC的邊AB上點P作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為( 。
A、
1
3
B、
1
2
C、
2
3
D、不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連接PQ交邊AC于點D,則DE的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為( 。

查看答案和解析>>

同步練習冊答案