【題目】兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B.
(1)求k的值.
(2)把△OCD沿射線OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過的路徑長(zhǎng).
【答案】(1)k=2;(2)點(diǎn)D經(jīng)過的路徑長(zhǎng)為.
【解析】
(1)根據(jù)題意求得點(diǎn)B的坐標(biāo),再代入求得k值即可;(2)設(shè)平移后與反比例函數(shù)圖象的交點(diǎn)為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點(diǎn)E,交DC于點(diǎn)F,設(shè)CD交y軸于點(diǎn)M(如圖),根據(jù)已知條件可求得點(diǎn)D的坐標(biāo)為(﹣1,1),設(shè)D′橫坐標(biāo)為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的長(zhǎng),即可得點(diǎn)D經(jīng)過的路徑長(zhǎng).
(1)∵△AOB和△COD為全等三的等腰直角三角形,OC=,
∴AB=OA=OC=OD=,
∴點(diǎn)B坐標(biāo)為(),
代入得k=2;
(2)設(shè)平移后與反比例函數(shù)圖象的交點(diǎn)為D′,
由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點(diǎn)E,交DC于點(diǎn)F,設(shè)CD交y軸于點(diǎn)M,
如圖,
∵OC=OD=,∠AOB=∠COM=45°,
∴OM=MC=MD=1,
∴D坐標(biāo)為(﹣1,1),
設(shè)D′橫坐標(biāo)為t,則OE=MF=t,
∴D′F=DF=t+1,
∴D′E=D′F+EF=t+2,
∴D′(t,t+2),
∵D′在反比例函數(shù)圖象上,
∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
∴D′(﹣1, +1),
∴DD′==,
即點(diǎn)D經(jīng)過的路徑長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,點(diǎn)E在AC的垂直平分線上.
(1)若AB=5,BC=7,求△ABE的周長(zhǎng);
(2)若∠B=57°,∠DAE=15°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點(diǎn)D.過點(diǎn)A作⊙O的切線與
OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:PC是⊙O的切線;
(2)若∠ABC=60°,AB=10,求線段CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面材料,然后解決問題:在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”.例如:,;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”,例如:,.我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù),例如:=2+=2,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如:=1+.
(1)將分式化為帶分式;
(2)當(dāng)x取哪些整數(shù)值時(shí),分式的值也是整數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條筆直公路BD的正上方A處有一探測(cè)儀,AD=24m,∠D=90°,一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°.
(Ⅰ)求B,C兩點(diǎn)間的距離(結(jié)果精確到1m);
(Ⅱ)若規(guī)定該路段的速度不得超過15m/s,判斷此轎車是否超速.
參考數(shù)據(jù):tan31°≈0.6,tan50°≈1.2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過D作直線DE垂直BC于F,且交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:直線DE是⊙O的切線;
(2)若cos∠BAC=,⊙O的半徑為6,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過點(diǎn)A的切線相交于點(diǎn)E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com