如圖,已知:在△ABC中,AB=BC=CA=2,D為BC延長線上一點,CD=1,P為AB上一動點(不運動至點A,B),以PC為直徑作⊙O交BC于M,連接PD,交⊙O于H,交AC于E,連接PM.
(1)設(shè)AP=t,S△PCD=S,求S關(guān)于t的函數(shù)解析式和t的取值范圍;
(2)過D作⊙O的切線DT,T為切點,試用含t的代數(shù)式表示DT的長;
(3)當(dāng)點P運動到AB中點時,求證:
S△PCD
S△PCE
=
CD
CE
(1)∵PC是直徑,
∴PM⊥BC,
在Rt△PBM中,PB=2-t,∠B=60°,
∴PM=PB•sin60°=
3
(2-t)
2
,
S=
1
2
×CD×PM=
3
(2-t)
4
(0<t<2).

(2)由(1)可知,BM=
1
2
(2-t),MC=2-BM=
1
2
(2+t),MD=MC+1=2+
1
2
t;
由切割線定理得DT2=DC•DM=2+
1
2
t,
∴DT=
2+
1
2
t


(3)證明:作PN⊥AC于N;
∵點P為AB中點,
∴CP為等邊△ABC的中線,
∴PC平分∠ACB,
∵PM=PN,
∴S△PCD=
1
2
PM•CD,S△PCE=
1
2
PN•CE,
S△PCD
S△PCE
=
CD
CE
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB⊥MN,垂足為點B,P是射線BN上的一個動點,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,點C到MN的距離為線段CD的長.
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)在點P的運動過程中,點C到MN的距離是否會發(fā)生變化?如果發(fā)生變化,請用x的代數(shù)式表示這段距離;如果不發(fā)生變化,請求出這段距離;
(3)如果圓C與直線MN相切,且與以BP為半徑的圓P也相切,求BP:PD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD的各邊都與⊙O相切,如果ADBC,那么∠DOC的度數(shù)是( 。
A.70°B.90°C.60°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB分別與⊙O相切于點A、B,⊙O的切線EF分別交PA、PB于點E、F,切點C在
AB
上,若PA長為2,則△PEF的周長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,直線BC與⊙O相切于點B,過A作ADOC交⊙O于點D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AD=2,直徑AB=6,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,兩個等圓⊙O與⊙O′外切,過點O作⊙O′的兩條切線OA、OB,A、B是切點,則∠AOB=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB、AC、BD是⊙O的切線,P、C、D為切點,如果AB=5,AC=3,則BD的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA為⊙O的切線,A為切點,PO交⊙O于點B,PA=4,OA=3,則OP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知AB、AC分別是⊙O的直徑和切線,BC交⊙O于D,AB=8,AC=6,則AD=______.

查看答案和解析>>

同步練習(xí)冊答案