2011年長(zhǎng)江中下游地區(qū)發(fā)生了特大旱情.為抗旱保豐收,某地政府制定了農(nóng)戶(hù)投資購(gòu)買(mǎi)抗旱設(shè)備的補(bǔ)貼辦法,其中購(gòu)買(mǎi)Ⅰ型、Ⅱ型抗旱設(shè)備投資的金額與政府補(bǔ)的額度存在下表所示的函數(shù)對(duì)應(yīng)關(guān)系.
型 號(hào)
金 額
投資金額x(萬(wàn)元)
Ⅰ型設(shè)備Ⅱ型設(shè)備
x5x24
補(bǔ)貼金額y(萬(wàn)元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶(hù)同時(shí)對(duì)Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬(wàn)元購(gòu)買(mǎi),請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大補(bǔ)貼金額的方案,并求出按此方案能獲得的最大補(bǔ)貼金額.
(1)設(shè)y1=kx,將(5,2)代入得:
2=5k,
解得:k=0.4,
故y1=0.4x,
設(shè)y2=ax2+bx,將(2,2.4),(4,3.2)代入得:
2.4=4a+2b
3.2=16a+4b

解得:a=-0.2,b=1.6,
∴y2=-0.2x2+1.6x;

(2)假設(shè)投資購(gòu)買(mǎi)Ⅰ型用x萬(wàn)元、Ⅱ型為(10-x)萬(wàn)元,
y=y1+y2=0.4x-0.2(10-x)2+1.6(10-x);
=-0.2x2+2.8x-4,
當(dāng)x=-
b
2a
=7時(shí),y=
4ac-b2
4a
=5.8萬(wàn)元,
∴當(dāng)購(gòu)買(mǎi)Ⅰ型用7萬(wàn)元、Ⅱ型為3萬(wàn)元時(shí)能獲得的最大補(bǔ)貼金額,最大補(bǔ)貼金額為5.8萬(wàn)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2經(jīng)過(guò)點(diǎn)(1,5),當(dāng)y=15時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形OABC的長(zhǎng)OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC,可得下列結(jié)論:①∠PCB=30°;②點(diǎn)P的坐標(biāo)是(
3
2
,
3
2
);③若P、C兩點(diǎn)在拋物線y=-
4
3
x2+bx+c
上,則b的值是-
3
,c的值是1;④在③中的拋物線CP段(不包括C、P兩點(diǎn))上,存在一點(diǎn)Q,使四邊形QCAP的面積最大,最大值為
9
3
16
.其中正確的有( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=(x+1)2+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3)
(1)求拋物線的對(duì)稱(chēng)軸及k的值;
(2)拋物線的對(duì)稱(chēng)軸上存在一點(diǎn)P,使得PA+PC的值最小,求此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)M是拋物線上的一動(dòng)點(diǎn),且在第三象限.
①當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),△AMB的面積最大?求出△AMB的最大面積及此時(shí)點(diǎn)M的坐標(biāo);
②當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)M,問(wèn)在對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(0,3)和(-1,0),那么拋物線的解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用一塊長(zhǎng)為50cm、寬為30cm的長(zhǎng)方形鐵片制作一個(gè)無(wú)蓋的盒子,若在鐵片的四個(gè)角截去四個(gè)相同的小正方形,設(shè)小正方形的邊長(zhǎng)為xcm.
(1)底面的長(zhǎng)AB=______cm,寬BC=______cm(用含x的代數(shù)式表示)
(2)當(dāng)做成盒子的底面積為300cm2時(shí),求該盒子的容積.
(3)該盒子的側(cè)面積S是否存在最大的情況?若存在,求出x的值及最大值是多少?若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某養(yǎng)殖專(zhuān)業(yè)戶(hù)計(jì)劃利用房屋的一面墻修造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已準(zhǔn)備可以修高為3m.長(zhǎng)30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長(zhǎng)為xm.(不考慮水池墻的厚度)
(1)請(qǐng)直接寫(xiě)出AB的長(zhǎng)(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)如果房屋的墻壁可利用的長(zhǎng)度為10.5m,請(qǐng)利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:拋物線y=a(x-2)2+b(ab<0)的頂點(diǎn)為A,與x軸的交點(diǎn)為B,C
(1)拋物線對(duì)稱(chēng)軸方程為_(kāi)_____;
(2)若D點(diǎn)為拋物線對(duì)稱(chēng)軸上一點(diǎn),若以A,B,C,D為頂點(diǎn)的四邊形是正方形,則a,b滿足的關(guān)系式是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案