【題目】如圖,兩條射線BA//CD,PB和PC分別平分∠ABC和∠DCB,AD過點(diǎn)P,分別交AB,CD與點(diǎn)A,D.
(1)求∠BPC的度數(shù);
(2)若,求AB+CD的值;
(3)若為a,為b,為c,求證:a+b=c.
【答案】(1)90°;(2)4;(3)證明見解析
【解析】
(1)根據(jù)角平分線定義和平行線的性質(zhì),可得∠PBC+∠PCB的值,于是可求∠BPC的值;
(2)在△ABP,△PCD和△BCP中,利用特殊角在直角三角形中的邊關(guān)系可求AB+CD的值.
(3)利用角平分線性質(zhì)作垂直證明全等,通過割法獲得面積關(guān)系.
(1)∵BA∥CD,∴∠ABC+∠BCD=180°.
∵PB和PC分別平分∠ABC和∠DCB,∴∠PBC∠ABC,∠PCB∠BCD,∴∠PBC+∠PCB(∠ABC+∠BCD)=90°,∴∠BPC=90°;
(2)若∠BCD=60°,BP=2,∴∠ABC=180°-60°=120°,∠PCD∠BCD=30°,∴∠ABP∠ABC=60°.
在Rt△ABP中,BP=2,AB=1.在Rt△BCP中,CP=2.在Rt△PCD中,PD,CD=3,∴AB+CD=4.
(3)如圖,作PQ⊥BC.
∵∠ABP=∠QBP,∠BAP=∠BQP,BP=BP.
∴△ABP≌△BQP(AAS).
同理△PQC≌△PCD(AAS),∴S△BCP=S△BPQ+S△PQC=S△ABP+S△PCD,∴a+b=c.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,A點(diǎn)坐標(biāo)是(1,3),B點(diǎn)坐標(biāo)是(5,1),C點(diǎn)坐標(biāo)是(1,1)
(1)求△ABC的面積是____;
(2)求直線AB的表達(dá)式;
(3)一次函數(shù)y=kx+2與線段AB有公共點(diǎn),求k的取值范圍;
(4)y軸上有一點(diǎn)P且△ABP與△ABC面積相等,則P點(diǎn)坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年,陜西西安被教育部列為“減負(fù)”工作改革試點(diǎn)地區(qū).學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)我市近80000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實(shí)惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟(jì)角度看,每千克這種水果漲價多少元,能使商場獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為的直徑,P為BA延長線上的一點(diǎn),D在上(不與點(diǎn)A,點(diǎn)B重合),連結(jié)PD交于點(diǎn)C,且PC=OB.設(shè),下列說法正確的是( )
A. 若,則
B. 若 ,則
C. 若 ,則
D. 若 ,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生”號召,某校開展了志愿者服務(wù)活動,活動項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項(xiàng),活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動數(shù)為3項(xiàng)的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動,他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,常數(shù)b<0,m>0,點(diǎn)A、B的坐標(biāo)分別為(﹣,0)、(m,2m+b),正方形BCDE的頂點(diǎn)C、D分別在x軸的正半軸上.
(1)直接寫出點(diǎn)D和點(diǎn)E的坐標(biāo)(用含b、m的代數(shù)式表示);
(2)求的值;
(3)正方形BC′D′E′和正方形BCDE關(guān)于直線AB對稱,點(diǎn)C′、D′、E′分別是點(diǎn)C、D、E的對稱點(diǎn),C′D′交y軸于點(diǎn)M,D′N⊥x軸,垂足為N,連接MN.
①若點(diǎn)N和點(diǎn)A關(guān)于y軸對稱,求證:MN=MD′;
②若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】霧霾是對大氣中各種懸浮顆粒物含量超標(biāo)的籠統(tǒng)表述,霧霾的主要危害可歸納為兩種:一是對人體產(chǎn)生危害,二是對交通產(chǎn)生危害.霧霾天氣是一種大氣污染狀態(tài),成都市區(qū)冬天霧霾天氣比較嚴(yán)重,很多家庭興起了為家里添置“空氣清潔器”的熱潮,為此,我市某商場根據(jù)民眾健康要,代理銷售某種進(jìn)價為600元/臺的家用“空氣清潔器”.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是700元/臺時,可售出350臺,且售價每提高10元,就會少售出5臺.
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;
(2)請計(jì)算當(dāng)售價x(元臺)定為多少時,該商場每月銷售這種“空氣清潔器”所獲得的利潤W(元)最大?最大利潤是多少?
(3)若政府計(jì)劃遴選部分商場,將銷售“空氣清潔器”納入民生工程項(xiàng)目,規(guī)定:每銷售一臺“空氣淸潔器”,財(cái)政補(bǔ)貼商家200元,但銷售利潤不能高于進(jìn)價的25%,請問:該商場想獲取最大利潤,是否參與競標(biāo)此民生工程項(xiàng)目?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com