【題目】如圖,E在直線DF上,B在直線AC上,若∠AGB=∠EHF,∠C=∠D,試判斷∠A與∠F的關(guān)系,并說(shuō)明理由.

說(shuō)明:

因?yàn)椤?/span>AGB=∠EHF(已知)

AGB   (依據(jù):   )

所以   ,(等量代換)

所以   (依據(jù):   )

所以∠C   (依據(jù):   )

又因?yàn)椤?/span>C=∠D,(已知)

所以   ,(等量代換)

所以DFAC(依據(jù):   )

所以∠A=∠F

【答案】見解析.

【解析】

推出∠EHF=DGF,推出BDCE,根據(jù)平行線的性質(zhì)推出∠FEH=D,根據(jù)平行線的判定推出DFAC,根據(jù)平行線的性質(zhì)推出即可.

解:因?yàn)椤?/span>AGB=∠EHF,∠AGB=∠DGF(對(duì)頂角相等 )

所以∠DGF=∠EHF,(等量代換)

所以BDCE,(同位角相等,兩直線平行 )

所以∠C=∠ABD,(兩直線平行,同位角相等)

又因?yàn)椤?/span>C=∠D,(已知)

所以∠D=∠ABD(等量代換),

所以DFAC,(內(nèi)錯(cuò)角相等,兩直線平行)

所以∠A=∠F

故答案為:∠DGF,對(duì)頂角相等,∠DGF=∠EHF,同位角相等,兩直線平行,∠ABD,兩直線平行,同位角相等,∠D=∠ABD,內(nèi)錯(cuò)角相等,兩直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBC上的中線,點(diǎn)E在線段AC上且EC=2AE,線段AD與線段BE交于點(diǎn)F,若ABC對(duì)面積為3,則四邊形EFDC的面積為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知正方形的頂點(diǎn)分別在軸和軸上,邊軸的正半軸于點(diǎn)

1)若,且,求點(diǎn)的坐標(biāo);

2)在(l)的條件下,若,求點(diǎn)的坐標(biāo);

3)如圖2,連結(jié)軸于點(diǎn),點(diǎn)點(diǎn)上方軸上一動(dòng)點(diǎn),以為邊作,使點(diǎn)恰好落在邊上,試探討的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)、點(diǎn),一次函數(shù)的圖象與直線AB交于點(diǎn)P

1)求直線AB的函數(shù)表達(dá)式及P點(diǎn)的坐標(biāo);

2)若點(diǎn)Qy軸上一點(diǎn),且△BPQ的面積為2,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價(jià)為15元/千克,如果售價(jià)為20元/千克,那么每天可售出250千克,如果售價(jià)為25元/千克,那么每天可獲利2000元,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價(jià)x(元/千克)之間存在一次函數(shù)關(guān)系.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若櫻桃的售價(jià)不得高于28元/千克,請(qǐng)問(wèn)售價(jià)定為多少時(shí),該超市每天銷售櫻桃所獲的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究發(fā)現(xiàn)

如圖1,正方形中,點(diǎn)分別在上,.通過(guò)探究可以發(fā)現(xiàn)線段之間存在一定的數(shù)量關(guān)系:

拓展延伸

如圖2,正方形中,點(diǎn)分別在的延長(zhǎng)線上,

①線段之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;

②若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃參與一項(xiàng)工程建設(shè),甲隊(duì)單獨(dú)施工天完成該項(xiàng)工程的,這時(shí)乙隊(duì)加入,兩隊(duì)還需同時(shí)施工天,才能完成該項(xiàng)工程.

1)若乙隊(duì)單獨(dú)施工,需要多少天才能完成該項(xiàng)工程;

2)若甲隊(duì)參與該項(xiàng)工程施工的時(shí)間不超過(guò)天,則乙隊(duì)至少施工多少天才能完成該項(xiàng)工程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了擴(kuò)大生產(chǎn),決定購(gòu)買6臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇.其中甲型機(jī)器每日生產(chǎn)零件106個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)査,購(gòu)買3臺(tái)甲型機(jī)器和2臺(tái)乙型機(jī)器共需要31萬(wàn)元,購(gòu)買一臺(tái)甲型機(jī)器比購(gòu)買一臺(tái)乙型機(jī)器多2萬(wàn)元

1)求甲、乙兩種機(jī)器每臺(tái)各多少萬(wàn)元?

2)如果工廠期買機(jī)器的預(yù)算資金不超過(guò)34萬(wàn)元,那么你認(rèn)為該工廠有哪幾種購(gòu)買方案?

3)在(2)的條件下,如果要求該工廠購(gòu)進(jìn)的6臺(tái)機(jī)器的日產(chǎn)量能力不能低于380個(gè),那么為了節(jié)約資金.應(yīng)該選擇哪種方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案