設(shè)x>0,試比較代數(shù)式x3和x2+x+2的值的大。

解:設(shè)x=0,
則x3<x2+x+2.①
設(shè)x=10,則有x3=1000,x2+x+2=112,
所以x3>x2+x+2.②
設(shè)x=100,則有x3>x2+x+2.
觀察、比較①,②兩式的條件和結(jié)論,可以發(fā)現(xiàn):當(dāng)x值較小時(shí),x3<x2+x+2;當(dāng)x值較大時(shí),x3>x2+x+2.
那么自然會(huì)想到:當(dāng)x=?時(shí),x3=x2+x+2呢?如果這個(gè)方程得解,則它很可能就是本題得解的“臨界點(diǎn)”.
為此,設(shè)x3=x2+x+2,則
x3-x2-x-2=0,
(x3-x2-2x)+(x-2)=0,
(x-2)(x2+x+1)=0.
因?yàn)閤>0,所以x2+x+1>0,所以x-2=0,所以x=2.這樣
(1)當(dāng)x=2時(shí),x3=x2+x+2;
(2)當(dāng)0<x<2時(shí),因?yàn)?br/>x-2<0,x2+x+1>0,
所以(x-2)(x2+x+1)<0,
即x3-(x2+x+2)<0,
所以x3<x2+x+2.
(3)當(dāng)x>2時(shí),因?yàn)?br/>x-2>0,x2+x+1>0,
所以(x-2)(x2+x+1)>0,
即x3-(x2+x+2)>0,
所以x3>x2+x+2.
綜合歸納(1),(2),(3)就得到本題的解答.
分析:分析與解本題直接觀察,不好做出歸納猜想,因此可設(shè)x等于某些特殊值,代入兩式中做試驗(yàn)比較,或許能啟發(fā)我們發(fā)現(xiàn)解題思路.然后做減法,因式分解后,討論得解.
點(diǎn)評(píng):本題考查因式分解的應(yīng)用,關(guān)鍵是找到比較大小的臨界點(diǎn),然后討論求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、設(shè)x>0,試比較代數(shù)式x3和x2+x+2的值的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-因式分解的應(yīng)用(帶解析) 題型:解答題

設(shè)x>0,試比較代數(shù)式x3和x2+x+2的值的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-因式分解的應(yīng)用(解析版) 題型:解答題

設(shè)x>0,試比較代數(shù)式x3和x2+x+2的值的大小.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

設(shè)x>y,試比較代數(shù)式-(8-10x)與-(8-10y)的大小,如果較大的代數(shù)式為正數(shù),則其中最小的正整數(shù)x或y的值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案