如圖所示,一半徑為1的圓內(nèi)切于一個圓心角為60°的扇形,則扇形的周長為   
6+

試題分析:首先求出扇形半徑,進而利用扇形弧長公式求出扇形弧長,進而得出扇形周長.
試題解析:如圖所示:設⊙O與扇形相切于點A,B,

則∠CAO=90°,∠ACB=30°,
∵一半徑為1的圓內(nèi)切于一個圓心角為60°的扇形
∴AO=1,
∴CO=2AO=2,
∴BC=2+1=3,
∴扇形的弧長為:
∴則扇形的周長為:3+3+=6+
考點: 1.相切兩圓的性質(zhì);2.弧長的計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑的⊙O與邊AC相切于點E,連接DE并延長,與BC的延長線交于點F.

(1)求證:DE=FE;
(2)若BC=9,AD=6,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知PA、PB是⊙O的切線,A、B為切點,∠OAB=30°.

(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BC是⊙O的直徑,A是⊙O上一點,過點C作⊙O的切線,交BA的延長線于點D,取CD的中點E,AE的延長線與BC的延長線交于點P。

(1)求證:AP是⊙O的切線;
(2)若OC=CP,AB=,求CD的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,平面直角坐標系中,⊙O的半徑長為1,點P(a,0),⊙P的半徑長為2,把⊙P向左平移,當⊙P與⊙O相切時,a的值為  (  )
A.3B.1
C.1,3D.±1,±3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙C過原點,且與兩坐標軸分別交于點A、點B,點A的坐標為(0,3),M是第三象限內(nèi)弧OB上一點,∠BMO=120°,則⊙C的半徑長為( 。

A.6           B.5
C.3           D.3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D且CO=CD,則∠PCA等于(    )
A.30°B.45°C.60°D.67.5°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1和⊙O2的半徑分別為1和4,如果兩圓的位置關(guān)系為相交,那么圓心距O1O2的取值范圍在數(shù)軸上表示正確的是(      )
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點O在Rt△ABC的斜邊AB上,⊙O切AC邊于點E,切BC邊于點D,連結(jié)OE,如果由線段CD、CE及劣弧ED圍成的圖形(陰影部分)面積與△AOE的面積相等,那么的值為   ____    

查看答案和解析>>

同步練習冊答案