【題目】如圖,在矩形ABCD中,AB=3,BC=4,P是對角線AC上的動點,連接DP,將直線DP繞點P順時針旋轉(zhuǎn)使∠DPG=∠DAC,且過D作DG⊥PG,連接CG,則CG最小值為( )
A. B. C. D.
【答案】D
【解析】
如圖,作DH⊥AC于H,連接HG延長HG交CD于F,作HE⊥CD于H.證明△ADP∽△DHG,推出∠DHG=∠DAP=定值,推出點G在射線HF上運動,推出當CG⊥HE時,CG的值最小,想辦法求出CG即可.
如圖,作DH⊥AC于H,連接HG延長HG交CD于F,作HE⊥CD于H.
∵DG⊥PG,DH⊥AC,
∴∠DGP=∠DHA,
∵∠DPG=∠DAH,
∴△ADH∽△PDG,
∴,∠ADH=∠PDG,
∴∠ADP=∠HDG,
∴△ADP∽△DHG,
∴∠DHG=∠DAP=定值,
∴點G在射線HF上運動,
∴當CG⊥HE時,CG的值最小,
∵四邊形ABCD是矩形,
∴∠ADC=90°,
∴∠ADH+∠HDF=90°,
∵∠DAH+∠ADH=90°,
∴∠HDF=∠DAH=∠DHF,
∴FD=FH,
∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,
∴∠FHC=∠FCH,
∴FH=FC=DF=3,
在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,
∴AC==5,DH=,
∴CH=,
∴EH=,
∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,
∴△CGF≌△HEF(AAS),
∴CG=HE=,
∴CG的最小值為,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】點A,B的坐標分別為(-2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的 頂點在線段AB上運動時,形狀保持不變,且與x軸交于C,D兩點(C在D的左側(cè)),給出下列結(jié)論:①c<3;②當x<-3時,y隨x的增大而增大;③若點D的橫坐標最大值為5,則點C的橫坐標最小值為-5;④當四邊形ACDB為平行四邊形時,a=.其中正確的是( )
A. ②④ B. ②③ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等邊△ABC的邊長為4cm,動點D從點B出發(fā),沿射線BC方向移動,以AD為邊作等邊△ADE.
(1)在點D運動的過程中,點E能否移動至直線AB上?若能,求出此時BD的長;若不能,請說明理由;
(2)如圖2,在點D從點B開始移動至點C的過程中,以等邊△ADE的邊AD、DE為邊作ADEF.
①ADEF的面積是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由;
②若點M、N、P分別為AE、AD、DE上動點,直接寫出MN+MP的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點和,與軸交于點.
(1)求=______,=______;
(2)根據(jù)函數(shù)圖象可知,當時,的取值范圍是____________.
(3)求
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從兩地同時出發(fā),甲車勻速前往地,到達地立即以另一速度按原路勻速返回到地;乙車勻速前往地,設甲、乙兩車距地的路程為(千米),甲車行駛的時間為(小時)與之間的函數(shù)圖象如圖所示:
(1)甲車從地開往地時的速度是_________;乙車從地開往地時的速度是______.
(2)圖中點的坐標是(______,______);
(3)求甲車返回時與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(-12)-5+(-14)-(-39) (2)
(3)5(a2b-ab2)-(ab2+3a2b) (4)(用簡便方法計算)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖1,當EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖2,當EF與AB相交時,若∠EAB=α(0°<α<90°),請你直接寫出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,當EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D在⊙O上,AB=AC,AD與BC相交于點E,AE=ED,延長DB到點F,使FB=BD,連接AF.
(1)證明:△BDE∽△FDA;
(2)試判斷直線AF與⊙O的位置關(guān)系,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com