【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙OBC于點(diǎn)D,過點(diǎn)D⊙O的切線DEAC于點(diǎn)E,交AB延長線于點(diǎn)F.

(1)求證:BD=CD;

(2)求證:DC2=CEAC;

(3)當(dāng)AC=5,BC=6時(shí),求DF的長.

【答案】(1)詳見解析;(2)詳見解析;(3)DF=

【解析】

(1)先判斷出ADBC,即可得出結(jié)論;

(2)先判斷出ODAC,進(jìn)而判斷出∠CED=ODE,判斷出CDE∽△CAD,即可得出結(jié)論;

(3)先求出OD,再求出CD=3,進(jìn)而求出CE,AE,DE,再判斷出,即可得出結(jié)論.

(1)連接AD,

AB是⊙O的直徑,

∴∠ADB=90°,

ADBC,

AB=AC,

BD=CD;

(2)連接OD,

DE是⊙O的切線,

∴∠ODE=90°

由(1)知,BD=CD,

OA=OB,

ODAC,

∴∠CED=ODE=90°=ADC,

∵∠C=C,

∴△CDE∽△CAD,

,

CD2=CEAC;

(3)AB=AC=5,

由(1)知,∠ADB=90°,OA=OB,

OD=AB=

由(1)知,CD=BC=3,

由(2)知,CD2=CEAC,

AC=5,

CE=,

AE=AC-CE=5-=

RtCDE中,根據(jù)勾股定理得,DE=,

由(2)知,ODAC,

,

,

DF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】創(chuàng)新需要每個(gè)人的參與,就拿小華來說,為了解決曬衣服的,聰明的他想到了一個(gè)好辦法,在家寬敞的院內(nèi)地面上立兩根等長的立柱 (均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線,如圖,已知立柱米, 米.

(1)求繩子最低點(diǎn)離地面的距離;

(2)為了防止衣服碰到地面,小華在離米的位置處用一根垂直于地面的立柱撐起繩子 (如圖2),使左邊拋物線的最低點(diǎn)距米,離地面米,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=ABC,BEAC,垂足為點(diǎn)E,BDE是等邊三角形,若AD=4,則線段BE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長相等的兩個(gè)正方形ABCO、ADEF如圖擺放,正方形ABCO的邊OA、OC在坐標(biāo)軸上,ED交線段OC于點(diǎn)G,ED的延長線交線段BC于點(diǎn)P,連AG,已知OA長為.

1)求證:;

2)若,AG=2,求點(diǎn)G的坐標(biāo);

3)在(2)條件下,在直線PE上找點(diǎn)M,使以MA、G為頂點(diǎn)的三角形是等腰三角形,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(問題情境)小明遇到這樣一個(gè)問題:

如圖①,已知是等邊三角形,點(diǎn)邊上中點(diǎn),,交等邊三角形外角平分線所在的直線于點(diǎn),試探究的數(shù)量關(guān)系.

小明發(fā)現(xiàn):過,交,構(gòu)造全等三角形,經(jīng)推理論證問題得到解決.請(qǐng)直接寫出的數(shù)量關(guān)系,并說明理由.

2)(類比探究)

如圖②,當(dāng)是線段上(除外)任意一點(diǎn)時(shí)(其他條件不變)試猜想的數(shù)量關(guān)系并證明你的結(jié)論.

3)(拓展應(yīng)用)

當(dāng)是線段上延長線上,且滿足(其他條件不變)時(shí),請(qǐng)判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的網(wǎng)格紙中,每個(gè)小正方形的邊長都為1,動(dòng)點(diǎn)分別從點(diǎn),點(diǎn)同時(shí)出發(fā)向右移動(dòng),點(diǎn)的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng).

1)當(dāng)運(yùn)動(dòng)時(shí)間3秒時(shí),請(qǐng)?jiān)诰W(wǎng)格紙圖中畫出線段,并求其長度.

2)在動(dòng)點(diǎn),運(yùn)動(dòng)的過程中,若是以為腰的等腰三角形,求相應(yīng)的時(shí)刻的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABO中,∠OBA90°,A(8,8),點(diǎn)C在邊AB上,且,點(diǎn)DOB的中點(diǎn),點(diǎn)P為邊OA上的動(dòng)點(diǎn),當(dāng)點(diǎn)POA上移動(dòng)時(shí),使四邊形PDBC周長最小的點(diǎn)P的坐標(biāo)為( 。

A.(2,2)B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EF□ABCD對(duì)角線AC上的兩點(diǎn),且BE⊥AC,DF⊥AC.

1)求證:△ABE≌△CDF

2)請(qǐng)寫出圖中除△ABE≌△CDF外其余兩對(duì)全等三角形(不再添加輔助線).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校在休息日用藥熏消毒法對(duì)教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米的含藥量y(毫克)與時(shí)間x(時(shí))成正比例;藥物釋放結(jié)束后,yx成反比例;如圖所示,根據(jù)圖中提供的信息,解答下列問題:

1)寫出從藥物釋放開始,yx之間的兩個(gè)函數(shù)解析式;

2)據(jù)測定,當(dāng)藥物釋放結(jié)束后,每立方米的含藥量降至0.25毫克以下時(shí),學(xué)生方可進(jìn)入教室,那么從藥物釋放開始,至少需要經(jīng)過多長時(shí)間,學(xué)生才能進(jìn)入教室?

查看答案和解析>>

同步練習(xí)冊(cè)答案