【題目】如圖1,四邊形ABGC內(nèi)接于⊙O,GA平分∠BGC.
(1)求證:AB=AC;
(2)如圖2,過(guò)點(diǎn)A作AD∥BG交CG于點(diǎn)D,連接BD交線段AG于點(diǎn)W,若∠BAG+∠CAD=∠AWB,求證:BD=BG;
(3)在(2)的條件下,若CD=5,BD=16,求WG的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】
(1)由GA平分∠BGC可得∠AGB=∠AGC,然后跟胡圓周角定理證明即可;
(2)設(shè)∠AGB=∠AGC=x,證得∠BAG+∠CAD=180°﹣3x=∠AWB,則∠BGD=∠BDG=2x,可得出結(jié)論BD=BG;
(3)延長(zhǎng)GC,使CK=BG=16,連接AK.根據(jù)SAS證明△ABG≌△ACK,可得∠K=∠AGB=∠AGC,得出AG=AK,過(guò)點(diǎn)A作AN⊥GK于點(diǎn)N,過(guò)點(diǎn)B作BH⊥DG于點(diǎn)H,設(shè)HD=GH=a,可得出DN=NG﹣DG=,證明△ADN∽△BDH,得出比例線段求出a=6,求出AG的長(zhǎng),證明△AWD∽△BWG,得出,可求出WG.
(1)證明:∵GA平分∠BGC,
∴∠AGB=∠AGC,
∴弧AB=弧AC,
∴AB=AC;
(2)證明:設(shè)∠AGB=∠AGC=x,
∵四邊形ABCD內(nèi)接于圓O,
∴∠BAC=180°﹣2x,
∵AD//BG,
∴∠AGB=∠DAG,
∴∠AGD=∠DAG=x,
∴∠BAG+∠CAD=180°﹣3x=∠AWB,
∵∠AWB=∠AGB+∠DBG,
∴∠DBG=180°﹣3x﹣x=180°﹣4x,
∴∠BDG=180°﹣2x﹣(180°﹣4x)=2x,
∴∠BGD=∠BDG=2x,
∴BD=BG;
(3)解:如圖2,延長(zhǎng)GC,使CK=BG=BD=16,連接AK.
∵AB=AC,∠ACK=∠ABG,
∴△ABG≌△ACK(SAS),
∴∠K=∠AGB=∠AGC=x,
∴AG=AK,
過(guò)點(diǎn)A作AN⊥GK于點(diǎn)N,過(guò)點(diǎn)B作BH⊥DG于點(diǎn)H,
設(shè)HD=GH=a,
∵CD=5,
∴GK=2a+5+16=2a+21,
∵AG=AK,AN⊥GK,
∴,
∴DN=NG﹣DG=,
∵∠AND=∠BHD,∠ADC=∠BGD=∠BDH,
∴△ADN∽△BDH,
∴,
∵∠AGD=∠DAG,
∴AD=GD=2a,
∴,
∴a2+8a﹣84=0,
解得a1=6,a2=﹣14(舍去),
∴AD=12,
∴在Rt△AND中,,
在Rt△AGN中,AG===6,
∵AD//BG,
∴△AWD∽△BWG,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果函數(shù)C:()的圖象經(jīng)過(guò)點(diǎn)(m,n)、(-m,-n),那么我們稱函數(shù)C為對(duì)稱點(diǎn)函數(shù),這對(duì)點(diǎn)叫做對(duì)稱點(diǎn)函數(shù)的友好點(diǎn).
例如:函數(shù)經(jīng)過(guò)點(diǎn)(1,2)、(-1,-2),則函數(shù)是對(duì)稱點(diǎn)函數(shù),點(diǎn)(1,2)、(-1,-2)叫做對(duì)稱點(diǎn)函數(shù)的友好點(diǎn).
(1)填空:對(duì)稱點(diǎn)函數(shù)一個(gè)友好點(diǎn)是(3,3),則b= ,c= ;
(2)對(duì)稱點(diǎn)函數(shù)一個(gè)友好點(diǎn)是(2b,n),當(dāng)2b≤x≤2時(shí),此函數(shù)的最大值為,最小值為,且=4,求b的值;
(3)對(duì)稱點(diǎn)函數(shù)()的友好點(diǎn)是M、N(點(diǎn)M在點(diǎn)N的上方),函數(shù)圖象與y軸交于點(diǎn)A.把線段AM繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到它的對(duì)應(yīng)線段A′M′.若線段A′M′與該函數(shù)的圖象有且只有一個(gè)公共點(diǎn)時(shí),結(jié)合函數(shù)圖象,直接寫(xiě)出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),點(diǎn)E是AC的中點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BD的延長(zhǎng)線于點(diǎn)F.連接AE并延長(zhǎng)交BF于點(diǎn)C.
(1)求證:AB=BC;
(2)如果AB=5,tan∠FAC=,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況(新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂(lè)節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2名,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AB=AC,BC=4,⊙O是△ABC的外接圓,若⊙O的半徑為4,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類(lèi)整理得到如表:
電影類(lèi)型 | 第一類(lèi) | 第二類(lèi) | 第三類(lèi) | 第四類(lèi) | 第五類(lèi) | 第六類(lèi) |
電影部數(shù) | 140 | 50 | 300 | 200 | 800 | 510 |
好評(píng)率 |
注:好評(píng)率是指一類(lèi)電影中獲得好評(píng)的部數(shù)與該類(lèi)電影的部數(shù)的比值.
如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評(píng)的第四類(lèi)電影的概率是______;
電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類(lèi)型電影的好評(píng)率發(fā)生變化假設(shè)表格中只有兩類(lèi)電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類(lèi)電影的好評(píng)率增加,哪類(lèi)電影的好評(píng)率減少,可使改變投資策略后總的好評(píng)率達(dá)到最大?
答:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)F在邊BC上,過(guò)點(diǎn)F作EF⊥BC,且FE=FC(CE<CB),連接CE、AE,點(diǎn)G是AE的中點(diǎn),連接FG.
(1)用等式表示線段BF與FG的數(shù)量關(guān)系是 ;
(2)將圖1中的△CEF繞點(diǎn)C按逆時(shí)針旋轉(zhuǎn),使△CEF的頂點(diǎn)F恰好在正方形ABCD的對(duì)角線AC上,點(diǎn)G仍是AE的中點(diǎn),連接FG、DF.
①在圖2中,依據(jù)題意補(bǔ)全圖形;
②求證:DF=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,直線AB交x軸于點(diǎn)A,交y軸于點(diǎn)B,AB=,tan∠BAO=3.
(1)求直線AB的解析式;
(2)直線y=kx+b經(jīng)過(guò)點(diǎn)B交x軸交于點(diǎn)C,且∠ABC=45°,AD⊥BC于點(diǎn)D.動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB方向以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,設(shè)△ADP的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍.
(3)在(2)的條件下,點(diǎn)P在線段BD上,點(diǎn)F在線段AB上,∠APC=∠FPB,連接AP,過(guò)點(diǎn)F作FG⊥AP于點(diǎn)G,交AD于點(diǎn)H,若DP=DH,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A的雙曲線y=(x>0)同時(shí)經(jīng)過(guò)點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則k的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com