【題目】中,,將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到線段AD,其中連結(jié)BDCD,

,,在圖1中補(bǔ)全圖形,并寫(xiě)出m值.

如圖2,當(dāng)為鈍角,時(shí),m值是否發(fā)生改變?證明你的猜想.

如圖3,,BDAC相交于點(diǎn)O,求的面積比.

【答案】(1)m=2(2)m值不發(fā)生改變(3)

【解析】

(1)如圖1,根據(jù)旋轉(zhuǎn)的性質(zhì)得AB=AD,則AB=AD=AC,于是可判斷點(diǎn)B、D、C在以點(diǎn)A為圓心、AB為半徑的圓上,則根據(jù)圓周角定理可得∠DAC=2∠DBC,即有m=2;
(2)與(1)一樣可判斷點(diǎn)B、D、C在以點(diǎn)A為圓心、AB為半徑的圓上,則根據(jù)圓周角定理可得∠DAC=2∠DBC,所以有m=2;
(3)作DH⊥ACH,如圖3,設(shè)AB=AC=AD=x,根據(jù)等腰直角三角形的性質(zhì)得∠ABC=45°,利用(2)中的結(jié)論和∠DBC+∠DAC=45°可計(jì)算出∠DBC=15°,∠CAD=30°,則∠ABD=30°,在△ABO中,根據(jù)含30度的直角三角形三邊的關(guān)系得OB=,所以OC=AC-A0=,,在Rt△ADH中可計(jì)算出DH=,,接著利用三角形面積公式可分別計(jì)算出SOCD ,SAOB=,然后計(jì)算它們的比值.

解:如圖,

線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到線段AD

,

,

,

點(diǎn)BD、C在以點(diǎn)A為圓心、AB為半徑的圓上,

,

;

值不發(fā)生改變理由與一樣;

H,如圖3,

設(shè),

,,

,

,

,解得,

,,

中,

,

,

中,,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)P為BC的中點(diǎn),連接EP,AD.

(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點(diǎn)到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+2x+a﹣2=0.
(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)該方程的一個(gè)根為1時(shí),求a的值及方程的另一根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10)如圖,△ABC中,ADBC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BDDE,連接AE.

(1)若∠BAE40°,求∠C的度數(shù);

(2)若△ABC的周長(zhǎng)為14cm,AC6cm,求DC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,弦AB所對(duì)的劣弧是圓周長(zhǎng)的 ,其中圓的半徑為4cm,求:

(1)求AB的長(zhǎng).
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示表示王勇同學(xué)騎自行車離家的距離與時(shí)間之間的關(guān)系,王勇9點(diǎn)離開(kāi)家,15點(diǎn)回家,請(qǐng)結(jié)合圖象,回答下列問(wèn)題:

到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

他一共休息了幾次?休息時(shí)間最長(zhǎng)的一次是多長(zhǎng)時(shí)間?

在哪些時(shí)間段內(nèi),他騎車的速度最快?最快速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=3,AB=5,則CE的長(zhǎng)為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點(diǎn),CD⊥AF.AC是∠DAB的平分線,

(1)求證:直線CD是⊙O的切線.
(2)求證:△FEC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問(wèn)題:

(1)在圖1中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:   ;

(2)圖2中,當(dāng)∠D=50度,∠B=40度時(shí),求∠P的度數(shù).

(3)圖2中∠D和∠B為任意角時(shí),其他條件不變,試問(wèn)∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案