【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的,連接BE、CF相交于點D.

(1)求證:BE=CF;
(2)當四邊形ACDE為菱形時,求BD的長.

【答案】
(1)

證明:∵△AEF是由△ABC繞點A按順時針方向旋轉得到的,

∴AE=AB,AF=AC,∠EAF=∠BAC,

∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,

∵AB=AC,

∴AE=AF,

∴△AEB可由△AFC繞點A按順時針方向旋轉得到,

∴BE=CF;


(2)

解:∵四邊形ACDE為菱形,AB=AC=1,

∴DE=AE=AC=AB=1,AC∥DE,

∴∠AEB=∠ABE,∠ABE=∠BAC=45°,

∴∠AEB=∠ABE=45°,

∴△ABE為等腰直角三角形,

∴BE=AC=,

∴BD=BE﹣DE=﹣1.


【解析】(1)先由旋轉的性質得AE=AB,AF=AC,∠EAF=∠BAC,則∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根據(jù)旋轉的定義,△AEB可由△AFC繞點A按順時針方向旋轉得到,然后根據(jù)旋轉的性質得到BE=CD;
(2)由菱形的性質得到DE=AE=AC=AB=1,AC∥DE,根據(jù)等腰三角形的性質得∠AEB=∠ABE,根據(jù)平行線得性質得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判斷△ABE為等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】大學生小劉回鄉(xiāng)創(chuàng)辦小微企業(yè),初期購得原材料若干噸,每天生產相同件數(shù)的某種產品,單件產品所耗費的原材料相同.當生產6天后剩余原材料36噸,當生產10天后剩余原材料30噸.若剩余原材料數(shù)量小于或等于3噸,則需補充原材料以保證正常生產.
(1)求初期購得的原材料噸數(shù)與每天所耗費的原材料噸數(shù);
(2)若生產16天后,根據(jù)市場需求每天產量提高20%,則最多再生產多少天后必須補充原材料?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列剪紙圖案中,既是軸對稱圖形,又是中心對稱圖形的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.
(1)試判斷原方程根的情況;
(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1 , 0),B(x2 , 0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.(友情提示:AB=|x2﹣x1|)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為⊙O外一點,PA,PB是⊙O的切線,A,B為切點,PA=,∠P=60°,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠有甲種原料130kg,乙種原料144kg.現(xiàn)用這兩種原料生產出A,B兩種產品共30件.已知生產每件A產品需甲種原料5kg,乙種原料4kg,且每件A產品可獲利700元;生產每件B產品需甲種原料3kg,乙種原料6kg,且每件B產品可獲利900元.設生產A產品x件(產品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產A,B兩種產品的方案有哪幾種;
(2)設生產這30件產品可獲利y元,寫出y關于x的函數(shù)解析式,寫出(1)中利潤最大的方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用四條線段首尾相接連成一個框架,其中AB=12,BC=14,CD=18,DA=24,則A、B、C、D任意兩點之間的最長距離為(
A.24cm
B.26cm
C.32cm
D.36cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+4x的頂點為A,與x軸分別交于O、B兩點,過頂點A分別作AC⊥x軸于點C,AD⊥y軸于點D,連接BD,交AC于點E,則△ADE與△BCE的面積和為

查看答案和解析>>

同步練習冊答案