如圖,反比例函數(shù)數(shù)學(xué)公式的圖象與一次函數(shù)y=kx-b的圖象交于點(diǎn)M,N,已點(diǎn)M的坐標(biāo)為(1,3),點(diǎn)N的縱坐標(biāo)為-1,根據(jù)圖象信息可得關(guān)于x的方程數(shù)學(xué)公式=kx-b的解為


  1. A.
    -3,1
  2. B.
    -3,3
  3. C.
    -1,1
  4. D.
    3,-1
A
分析:把M的坐標(biāo)代入反比例函數(shù)的解析式求出m,把y=-1代入求出x,即可得出N的坐標(biāo),根據(jù)M、N的橫坐標(biāo)即可求出方程的解.
解答:∵點(diǎn)M的坐標(biāo)為(1,3),
∴代入y=得:m=3,
即y=
當(dāng)y=-1時(shí),x=-3,
即N(-3,-1),
∵由圖象可知:反比例函數(shù)的圖象與一次函數(shù)y=kx-b的圖象交點(diǎn)M,N,且M的坐標(biāo)為(1,3),N的坐標(biāo)是(-3,-1),
∴關(guān)于x的方程=kx-b的解為x=1,x=-3,
故該方程的解為:1,-3.
故選A.
點(diǎn)評(píng):本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,用待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題的應(yīng)用,關(guān)鍵是能根據(jù)M、N的坐標(biāo)求出方程的解,主要考查學(xué)生的理解能力和觀察能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南昌)如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo)和反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個(gè)單位后,問(wèn)點(diǎn)B是否落在雙曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)一模)如圖,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的縱坐標(biāo)為1,點(diǎn)C的坐標(biāo)為(2,0).
(Ⅰ)求反比例函數(shù)的解析式;
(Ⅱ)一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B、C,求一次函數(shù)的解析式;
(Ⅲ)當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時(shí),x的取值范圍是
x<-1或0<x<3
x<-1或0<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖里區(qū)一模)如圖,反比例函數(shù)y=
k
x
(k為常數(shù),k≠0)的圖象經(jīng)過(guò)點(diǎn)A(-1,4),過(guò)點(diǎn)A作直線AC與函數(shù)y=
k
x
的圖象交于另一點(diǎn)B,與x軸交于點(diǎn)C.
(1)若點(diǎn)B的縱坐標(biāo)為2,求點(diǎn)B到y(tǒng)軸的距離;
(2)若AB=3BC.求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,反比例函數(shù)的圖象和一次函數(shù)的圖象交于A和B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)B的坐標(biāo)為(-1,-3),一次函數(shù)圖象與X軸交于點(diǎn)C.連接OA.
(1)求該反比例函數(shù)的解析式和一次函數(shù)的解析式;
(2)求△OAC的面積;
(3)請(qǐng)觀察圖象,直接回答x為何值時(shí),反比例函數(shù)的值大于一次函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)的圖象與直線在第一象限交于點(diǎn)為直線上的兩點(diǎn),點(diǎn)的橫坐標(biāo)為2,點(diǎn)的橫坐標(biāo)為3.為反比例函數(shù)圖象上的兩點(diǎn),且平行于軸.

(1)直接寫(xiě)出的值;

(2)求梯形的面積.

 


查看答案和解析>>

同步練習(xí)冊(cè)答案