【題目】如圖所示,在△ABD中,BC為AD邊上的高線,tan∠BAD=1,在BC上截取CG=CD,連結(jié)AG,將△ACG繞點(diǎn)C旋轉(zhuǎn),使點(diǎn)G落在BD邊上的F處,A落在E處,連結(jié)BE,若AD=4,tanD=3,則△CFD和△ECF的面積比為___;BE長為____.
【答案】1:5, .
【解析】
作CM⊥DF于M,則∠CMD=90°,由已知得出∠BCD=∠ACB=90°,AC=BC,BC=3CD,求出CD=1,AC=BC=3,證明△CDM∽△BDC,,得出,證明△AGC≌△BDC,得出∠CAG=∠CBD,△AGC的面積=△BDC的面積,∠CAG=∠CBD,由旋轉(zhuǎn)的性質(zhì)得:CF=CD,EC=AC=BC,∠CEF=∠CAG,∠BCF=∠ACN,得出△CDF的面積=2△CDM的面積,求出△CFD的面積:△ECF的面積=1:5;證明△ACN≌△BCF,得出AN=BF,CN=CF=CD=CG=1,GN=DF,證明△CGN∽△CBE,得出,在Rt△DCM中,求出DM=,得出DF=2DM=,代入計算即可.
作CM⊥DF于M,如圖所示:
則∠CMD=90°,
∵在△ABD中,BC為AD邊上的高線,tan∠BAD=1,
∴∠BCD=∠ACB=90°,AC=BC,
在Rt△BCD中,∵tanD=3=,
∴BC=3CD,
∵AD=AC+CD=BC+CD=4,
∴CD=1,AC=BC=3,
∵∠CMD=∠BCD,∠D=∠D,
∴△CDM∽△BDC, ,
∴,
在△AGC和△BDC中,,
∴△AGC≌△BDC(SAS),
∴∠CAG=∠CBD,△AGC的面積=△BDC的面積,∠CAG=∠CBD,
由旋轉(zhuǎn)的性質(zhì)得:CF=CD,EC=AC=BC,∠CEF=∠CAG,∠BCF=∠ACN,
∴△CDF的面積=2△CDM的面積,
∴△CFD的面積:△ECF的面積=1:5;
∵CG=CD,
∴CG=CF,
在△ACN和△BCF中,,
∴△ACN≌△BCF(ASA),
∴AN=BF,CN=CF=CD=CG=1,
∴GN=DF,BC:CG=CE:CN,
∵∠GCN=∠BCE,
∴△CGN∽△CBE,
∴,
在Rt△DCM中,tanD=3,CD=1,
∴DM=,
∵CD=CF,CM⊥DF,
∴DF=2DM=,
∴GN=,
∴=,
解得:BE=;
故答案為:1:5,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2⑤當(dāng)﹣3≤x≤1時,y≥0,
其中正確的結(jié)論是(填寫代表正確結(jié)論的序號)__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時,a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n=5,求該直角三角形另兩邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點(diǎn),E為AB上一個動點(diǎn),將△ABC沿直線DE折疊,A,C的對應(yīng)點(diǎn)分別為,,交BC于點(diǎn)F,若△BEF為直角三角形,則BE的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0),過(1,y1)、(2,y2).下列結(jié)論:①若y1>0時,則a+b+c>0; ②若a=2b時,則y1<y2;③若y1<0,y2>0,且a+b<0,則a>0.其中正確的結(jié)論個數(shù)為( 。
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,
(1)若二次函數(shù)y=mx2+nx+1經(jīng)過點(diǎn)(2,0),(3,1),試分別求出兩個函數(shù)的解析式.
(2)若一次函數(shù)y=mx+n經(jīng)過點(diǎn)(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(diǎn)(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.
(3)若二次函數(shù)y=mx2+nx+1的頂點(diǎn)坐標(biāo)為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點(diǎn),已知﹣1<h<1,請求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動到點(diǎn)C時停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動到點(diǎn)C時停止,它們運(yùn)動的速度都是1cm/s.若P,Q同時開始運(yùn)動,設(shè)運(yùn)動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是【 】
A.AE=6cm B.
C.當(dāng)0<t≤10時, D.當(dāng)t=12s時,△PBQ是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期豬肉價格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場豬肉的平均價格達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
(1)從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)5月20日豬肉價格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在x軸的上方,∠AOB=90°,OA、OB分別與函數(shù)、的圖象交于A、B兩點(diǎn),以OA、OB為鄰邊作矩形AOBC.當(dāng)點(diǎn)C在y軸上時,分別過點(diǎn)A和點(diǎn)B作AE⊥x軸,BF⊥x軸,垂足分別為E、F,則=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com