【題目】RtΔABC中,∠B=90°,∠A=30°,DE垂直平分AC,AC于點E,AB于點D,連接CD,BD=2,AD的長是___.

【答案】4

【解析】

首先根據題意DE垂直平分AC,可判斷AD=CD,可得出ADC是等腰三角形,∠A=ACD=30°,又因為在RtΔABC中,∠B=90°,∠A=30°,得出∠ACB=60°,∠BCD=30°,又由BD=2,根據三角函數(shù)值,得出sinBCD==,得出CD=4,進而得出AD=4.

解:∵DE垂直平分AC,

AD=CD,

∴△ADC是等腰三角形,∠A=ACD=30°

又∵在RtΔABC中,∠B=90°,∠A=30°,

∴∠ACB=60°,∠BCD=30°

又∵BD=2,

sinBCD==

CD=4

AD=4.

故答案為4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】近年來,青少年中的近視眼和肥胖案例日趨增多,人們普遍意識到健康的身體是學習的保障,所以體育活動越來越受重視.某商店分兩次購進跳繩和足球兩種商品進行銷售,每次購進同一種商品的進價相同,具體情況如下表所示.

購進數(shù)量()

購進所需費用()

跳繩

足球

第一次

30

40

3800

第二次

40

30

3200

(1)跳繩和足球兩種商品每件的進價分別是多少元?

(2)商店計劃用5300元的資金進行第三次進貨,共購進跳繩和足球兩種商品100件,其中要求足球的數(shù)量不少于跳繩的數(shù)量,有哪幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)求證:OEOF;

2)若CE8,CF6,求OC的長;

3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DBC邊中點,PAC邊中點,EBC上一點且BECE,連接AE,取AE中點Q并連接QD,取QD中點G,延長PGBC邊交于點H,若BC6,則HE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌網上旗艦店售賣兩種規(guī)格的積木玩具:A規(guī)格一盒里面一個獨立包裝袋,共有40塊積木;B規(guī)格一盒里面有三個獨立包裝袋,共有n塊積木.小開的爸爸在網上買了兩種規(guī)格的積木若干盒,結果運輸過程中遭遇暴力快遞,收貨時發(fā)現(xiàn)里面的獨立包裝袋被損壞,積木全部混在了一起,經盤點發(fā)現(xiàn),共有20個獨立包裝袋和290塊積木,則n_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C,D在線段AB上,△PCD是等邊三角形.

(1)AC,CD,DB滿足怎樣的關系時,△ACP∽△PDB?

(2)當△ACP∽△PDB時,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在某一次實驗中,測得兩個變量之間的關系如下表所示:

自變量x

1

2

3

4

12

因變量y

12.03

5.98

3.04

1.99

1.00

請你根據表格回答下列問題:

① 這兩個變量之間可能是怎樣的函數(shù)關系?你是怎樣作出判斷的?請你簡要說明理由。

②請你寫出這個函數(shù)的解析式。

③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一天,王亮同學從家里跑步到體育館,在那里鍛煉了一陣后又走到某書店去買書,然后散步走回家如圖反映的是在這一過程中,王亮同學離家的距離s(千米)與離家的時間t(分鐘)之間的關系,請根據圖象解答下列問題:

1)體育館離家的距離為多少千米,書店離家的距離為多少千米;王亮同學在書店待了多少分鐘.

2)分別求王亮同學從體育館走到書店的平均速度和從書店出來散步回家的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在矩形ABCD,AB=6BC=8,將矩形ABCD沿CE折疊后使點D恰好落在對角線AC上的點F

1)求EF的長;

2)求梯形ABCE的面積

查看答案和解析>>

同步練習冊答案