【題目】如圖,有一個(gè)長(zhǎng)為24米的籬笆,一面利用墻(墻的最大長(zhǎng)度a為15米)圍成的中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要使圍成花圃面積最大,求AB的長(zhǎng)為多少米?
【答案】(1)S-3x2+24x;(2)當(dāng)AB長(zhǎng)為4m,寬為12m時(shí),有最大面積,為48平方米.
【解析】
(1)可先用籬笆的長(zhǎng)表示出BC的長(zhǎng),然后根據(jù)矩形的面積=長(zhǎng)×寬,得出S與x的函數(shù)關(guān)系式;
(2)根據(jù)二次函數(shù)的性質(zhì)求出自變量取值范圍內(nèi)的最值.
(1)S=(24-3x)x =-3x2+24x
(2)S=(24-3x)x =-3x2+24x =-3(x-4)2+48,
∴當(dāng)AB長(zhǎng)為4m,寬為12m時(shí),有最大面積,為48平方米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由27個(gè)相同的小立方塊搭成的幾何體,它的三個(gè)視圖是3×3的正方形,若拿掉若干個(gè)小立方塊(幾何體不倒掉),其三個(gè)視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個(gè)數(shù)為( 。
A. 10 B. 12 C. 15 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年某市高中招生體育考試規(guī)定:九年級(jí)男生考試項(xiàng)目有A、B、C、D、E五類:其中A:1000米跑必考項(xiàng)目;B:跳繩;C:引體向上;D:立定跳遠(yuǎn);E:50米跑,再?gòu)?/span>B、C、D、E中各選兩項(xiàng)進(jìn)行考試.
若男生甲第一次選一項(xiàng),直接寫出男生甲選中項(xiàng)目E的概率.
若甲、乙兩名九年級(jí)男生在選項(xiàng)的過程中,第一次都是選了項(xiàng)目E,那么他倆第二次同時(shí)選擇跳繩或立定跳遠(yuǎn)的概率是多少?請(qǐng)用列表法或畫樹狀圖的方法加以說明并列出所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①如果兩個(gè)三角形全等,那么這兩個(gè)三角形一定成軸對(duì)稱;②數(shù)軸上的點(diǎn)和實(shí)數(shù)一一對(duì)應(yīng);③若,則;④兩個(gè)無(wú)理數(shù)的和一定為無(wú)理數(shù);⑤精確到十分位;⑥如果一個(gè)數(shù)的算術(shù)平方根等于它本身,那么這個(gè)數(shù)是0.其中正確的說法有______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)在的內(nèi)部,,在、上分別取點(diǎn)、,使的周長(zhǎng)最短,則周長(zhǎng)的最小值為( )
A.4B.8C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點(diǎn)P在直線y=﹣x+2上,且S△ACP=S△BDP,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一把三角尺放在邊長(zhǎng)為2的正方形ABCD上(正方形四個(gè)內(nèi)角為90°,四邊都相等),并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC交于點(diǎn)Q。
探究:(1)當(dāng)點(diǎn)Q在邊CD 上時(shí),線段PQ 與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到結(jié)論;
(2)當(dāng)點(diǎn)Q在邊CD 上時(shí),如果四邊形 PBCQ 的面積為1,求AP長(zhǎng)度;
(3)當(dāng)點(diǎn)P在線段AC 上滑動(dòng)時(shí),△PCQ 是否可能成為等腰三角形?如果可能,指出所有能使△PCQ 成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的AP的長(zhǎng);如果不可能,試說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點(diǎn),DM與EN相交于點(diǎn)F.
(1)若△CMN的周長(zhǎng)為15cm,求AB的長(zhǎng);
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com