是一個(gè)(     )

(A)  整數(shù)         (B) 分?jǐn)?shù)        (C) 有理數(shù)        (D)   無理數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(-4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;

(3)在第二象限中是否存在的一點(diǎn)Q,使得以A,O,Q為頂點(diǎn)的三角形與△OBC相似。若存在,請求出所有滿足的Q點(diǎn)坐標(biāo);若不存在,請說明理由。(根據(jù)2007煙臺(tái)試卷改編)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長就是所求方程的解。(1)請利用所給的線段和線段b,作出方程的解。

(2)說說上述求法的不足之處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


將點(diǎn)A(2,1)向上平移3個(gè)單位長度得到點(diǎn)B的坐標(biāo)是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


2013年秋季以來,我國北方地區(qū)持續(xù)無降雨,導(dǎo)致了嚴(yán)重的旱情。蕭山區(qū)某初中學(xué)生會(huì)自發(fā)組織了“保護(hù)水資源從我做起”的活動(dòng). 同學(xué)們采取問卷調(diào)查的方式,隨機(jī)調(diào)查了本校150名同學(xué)家庭月人均用水量和節(jié)水措施情況.以下是根據(jù)調(diào)查結(jié)果做出的統(tǒng)計(jì)圖的一部分。請根據(jù)以上信息解答下列問題:

(1)補(bǔ)全圖1和圖2;

(2)如果全校學(xué)生家庭總?cè)藬?shù)為3000人,根據(jù)這150名同學(xué)家庭月人均用水量,估計(jì)全校學(xué)生家庭月用水總量多少噸?

                      

     

                          (第19題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


有兩個(gè)圓,⊙的半徑等于地球的半徑,⊙的半徑等于一個(gè)籃球的半徑,現(xiàn)將兩個(gè)圓都向外膨脹(相當(dāng)于作同心圓),使周長都增加1米,則半徑伸長的較多的圓是(   )

A、⊙   B、⊙  C、兩圓的半徑伸長是相同的 D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


正方形ABCD的邊長為acm,E、F分別是BC、CD的中點(diǎn),連接BF、DE,則圖中陰影部分的面積是          cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列因式分解正確的是( 。

 

A.

x2﹣y2=(x﹣y)2

B.

a2+a+1=(a+1)2

C.

xy﹣x=x(y﹣1)

D.

2x+y=2(x+y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①,△ABC與△DEF是將△ACF沿過A點(diǎn)的某條直線剪開得到的(AB,DE是同一條剪切線).平移△DEF使頂點(diǎn)E與AC的中點(diǎn)重合,再繞點(diǎn)E旋轉(zhuǎn)△DEF,使ED,EF分別與AB,BC交于M,N兩點(diǎn).

(1)如圖②,△ABC中,若AB=BC,且∠ABC=90°,則線段EM與EN有何數(shù)量關(guān)系?請直接寫出結(jié)論;

(2)如圖③,△ABC中,若AB=BC,那么(1)中的結(jié)論是否還成立?若成立,請給出證明:若不成立,請說明理由;

(3)如圖④,△ABC中,若AB:BC=m:n,探索線段EM與EN的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案