【題目】為了迎接疫情徹底結(jié)束后的購(gòu)物高峰.某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表
運(yùn)動(dòng)鞋價(jià)格 | 甲 | 乙 |
進(jìn)價(jià)(元/雙) | ||
售價(jià)(元/雙) |
已知:用元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
求的值;
要使購(gòu)進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共雙的總利潤(rùn)(利潤(rùn)售價(jià)進(jìn)價(jià))不少于元,且甲種運(yùn)動(dòng)鞋的數(shù)量不超過雙,問該專賣店共有幾種進(jìn)貨方案;
在的條件下,專賣店準(zhǔn)備對(duì)甲種運(yùn)動(dòng)鞋進(jìn)行優(yōu)惠促銷活動(dòng),決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專賣店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?
【答案】(1);(2)共有種方案;(3)此時(shí)應(yīng)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋雙,購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋雙
【解析】
(1)用總價(jià)除以單價(jià)表示出購(gòu)進(jìn)鞋的數(shù)量,根據(jù)兩種鞋的數(shù)量相等列出方程求解即可;
(2)設(shè)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋x雙,表示出乙種運(yùn)動(dòng)鞋(200-x)雙,然后根據(jù)總利潤(rùn)列出一元一次不等式組,求出不等式組的解集后,再根據(jù)鞋的雙數(shù)是正整數(shù)解答;
(3)設(shè)總利潤(rùn)為W,根據(jù)總利潤(rùn)等于兩種鞋的利潤(rùn)之和列式整理,然后根據(jù)一次函數(shù)的增減性分情況討論求解即可.
解:依題意得,
整理得,
解得
經(jīng)檢驗(yàn),是原分式方程的解,
所以,;
設(shè)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋雙,則乙種運(yùn)動(dòng)鞋雙,
根據(jù)題意得,,
解得
是正整數(shù),
共有種方案;
設(shè)總利潤(rùn)為
則
當(dāng)時(shí),隨的增大而減小,
所以,當(dāng)時(shí),有最大值,
即此時(shí)應(yīng)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋雙,購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋雙.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是⊙O的直徑AB延長(zhǎng)線上一點(diǎn),過⊙O上一點(diǎn)D作DF⊥AB于F,交⊙O于點(diǎn)E,點(diǎn)M是BE的中點(diǎn),AB=4,∠E=∠C=30°.
(1)求證:CD是⊙O的切線;
(2)求DM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個(gè)進(jìn)價(jià)為40元,經(jīng)市場(chǎng)預(yù)測(cè),銷售定價(jià)為50元,可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).設(shè)每個(gè)定價(jià)增加x元.
(1)寫出售出一個(gè)可獲得的利潤(rùn)是多少元(用含x的代數(shù)式表示)?
(2)商店若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)定價(jià)為多少元?應(yīng)進(jìn)貨多少個(gè)?
(3)商店若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?獲得的最大利潤(rùn)是多少?
【答案】(1)x+10元;(2)每個(gè)定價(jià)為70元,應(yīng)進(jìn)貨200個(gè).(3)每個(gè)定價(jià)為65元時(shí)得最大利潤(rùn),可獲得的最大利潤(rùn)是6250元.
【解析】試題分析:(1)根據(jù)利潤(rùn)=銷售價(jià)-進(jìn)價(jià)列關(guān)系式,(2)總利潤(rùn)=每個(gè)的利潤(rùn)×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設(shè)每個(gè)定價(jià)增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進(jìn)貨量較少,則每個(gè)定價(jià)為70元,應(yīng)進(jìn)貨200個(gè),
(3)設(shè)每個(gè)定價(jià)增加x元,獲得利潤(rùn)為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當(dāng)x=15時(shí),y有最大值為6250,所以每個(gè)定價(jià)為65元時(shí)得最大利潤(rùn),可獲得的最大利潤(rùn)是6250元.
【題型】解答題
【結(jié)束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,某校九年級(jí)同學(xué)對(duì)“新冠疫情下停課不停學(xué)”線上學(xué)習(xí)的家長(zhǎng)進(jìn)行問卷調(diào)查,隨機(jī)調(diào)查了若干名家長(zhǎng)對(duì)線上學(xué)習(xí)的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.反對(duì);D.贊成).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);
(2)求出圖2中扇形C所對(duì)的圓心角度數(shù),并將圖1補(bǔ)充完整;
(3)在此次調(diào)查活動(dòng)中,初三(1)班有A1、A2兩位家長(zhǎng)對(duì)線上學(xué)習(xí),持基本贊成的態(tài)度,初三(2)班有B1、B2兩位學(xué)生家長(zhǎng)對(duì)線上學(xué)習(xí),也持基本贊成的態(tài)度,現(xiàn)從這4位家長(zhǎng)中選2位家長(zhǎng)參加學(xué)校組織的家;顒(dòng),用列表法或畫樹狀圖的方法求出選出的2人來自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,點(diǎn)在邊上,連接將沿折疊,若點(diǎn)的對(duì)稱點(diǎn)到的距離為,則的長(zhǎng)為______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)泰山文化,某校舉辦了“泰山詩(shī)文大賽”活動(dòng),從中隨機(jī)抽取部分學(xué)生的比賽成績(jī),根據(jù)成績(jī)(成績(jī)都高于50分),繪制了如下的統(tǒng)計(jì)圖表(不完整):
組別 | 分?jǐn)?shù) | 人數(shù) |
第1組 | 90<x≤100 | 8 |
第2組 | 80<x≤90 | a |
第3組 | 70<x≤80 | 10 |
第4組 | 60<x≤70 | b |
第5組 | 50<x≤60 | 3 |
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)求出a,b的值;
(2)計(jì)算扇形統(tǒng)計(jì)圖中“第5組”所在扇形圓心角的度數(shù);
(3)若該校共有1800名學(xué)生,那么成績(jī)高于80分的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,E是BC的中點(diǎn),F是CD上一點(diǎn),AE⊥EF,下列結(jié)論:①∠BAE=30°;②△ABE∽△AEF;③CD=3CF;④S△ABE=4S△ECF.其中正確的有_____(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長(zhǎng)為18米,從D,E兩處測(cè)得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com