【題目】如圖,邊長為a的正方形木塊在水平地面上沿直線滾動一周(沒有滑動),則它的中心點(diǎn)O所經(jīng)過的路徑長為( )
A.4a
B.2 πa
C. πa
D. a
【答案】C
【解析】解:如圖
∵四邊形ABCD為正方形,且邊長為a,
∴OC= a,∠OCO′=90°,
∵邊長為a的正方形ABCD沿直線l向右做無滑動地翻滾,當(dāng)正方形翻滾一周時,需要翻滾四次,
而每次正方形的中心O所經(jīng)過的路徑長為弧OO′(以C為圓心,OC為半徑),
∴弧OO′的長= = aπ,
∴當(dāng)正方形翻滾一周時,正方形的中心O所經(jīng)過的路徑長=4× aπ= aπ.
故選C.
根據(jù)正方形的性質(zhì)易得OC= a,∠OCO′=90°,又邊長為a的正方形ABCD沿直線l向右做無滑動地翻滾,當(dāng)正方形翻滾一周時,需要翻滾四次,而每次正方形的中心O所經(jīng)過的路徑長為弧OO′(以C為圓心,OC為半徑),然后根據(jù)弧長公式計(jì)算出弧OO′的長,再乘以4即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校音樂組決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項(xiàng)目中,你最喜歡哪一項(xiàng)活動(每人只限一項(xiàng))”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)在這次調(diào)查中一共抽查了多少名學(xué)生?其中,喜歡“舞蹈”活動項(xiàng)目的人數(shù)占抽查總?cè)藬?shù)的百分比為多少?喜歡“戲曲”活動項(xiàng)目的人數(shù)是多少人?
(2)若在“舞蹈、樂器、聲樂、戲曲”活動項(xiàng)目任選兩項(xiàng)設(shè)立課外興趣小組,請用列表或畫樹狀圖的方法求恰好選中“舞蹈、聲樂”這兩項(xiàng)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時,求證:①△ADC≌△CEB;②DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時,求證:DE=AD﹣BE;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過對角線BD中點(diǎn)的直線交AD、BC邊于F、E.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,寫出EF與BD的關(guān)系.
(3)若∠A=60°,AB=4,BC=6,四邊形BEDF是矩形,求該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn) A(2,0),B(0,4),點(diǎn) C 在第一象限.
(1)如圖 1,連接 AB、BC、AC,∠OBC=90°,∠BAC=2∠ABO,求點(diǎn) C 的坐標(biāo);
(2)動點(diǎn) P 從點(diǎn) B 出發(fā),以每秒 2 個單位的速度沿 x 軸負(fù)方向運(yùn)動,連接 AP,設(shè) P 點(diǎn)的 運(yùn)動時間為 t 秒,△AOP 的面積為 S,用含 t 的式子表示 S,并直接寫出 t 的取值范圍;
(3)如圖 2,在(1)條件下,點(diǎn) P 在線段 OB 上,連接 AP、PC,AB 與 PC 相交于點(diǎn) Q,當(dāng)S=3, ∠BAC=∠BPC 時,求△ACQ 的面積.
圖 1 圖 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:(1)如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù). 小穎同學(xué)的解題思路是:如圖2,過點(diǎn)P作PE∥AB,請你接著完成解答.
問題遷移:
(2)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動,當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?
(提示:過點(diǎn)P作PE∥AD),請說明理由;
(3)在(2)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動時(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你猜想∠CPD、∠α、∠β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,E是CD中點(diǎn),連結(jié)OE.過點(diǎn)C作CF∥BD交線段OE的延長線于點(diǎn)F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E、F分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DF,AE,BF相交于點(diǎn)O,下列結(jié)論①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF中,錯誤的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com