如圖,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=(  )
分析:先根據(jù)平行線的性質(zhì)得出∠BAC+∠ACD=180°,∠DCE+∠CEF=180°,進而可得出結(jié)論.
解答:解:∵AB∥CD∥EF,
∴∠BAC+∠ACD=180°①,∠DCE+∠CEF=180°②,
①+②得,∠BAC+∠ACD+∠DCE+∠CEF=360°,即∠BAC+∠ACE+∠CEF=360°.
故選C.
點評:本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,同旁內(nèi)角互補.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中點.求證:CE⊥BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD,AD與BC相交于點E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,AB∥CD,∠C=80°,∠CAD=60°,則∠BAD的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

34、如圖,AB∥CD,P是BC上的一個動點,設∠CDP=∠1,∠CPD=∠2,請你猜想出∠1、∠2與∠B之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB∥CD,∠1=58°,則∠2的度數(shù)是( 。

查看答案和解析>>

同步練習冊答案