(2012•錫山區(qū)一模)拋物線(xiàn)y=2(x+1)2-2的頂點(diǎn)坐標(biāo)為
(-1,-2)
(-1,-2)
分析:直接根據(jù)拋物線(xiàn)的頂點(diǎn)式為y=a(x+
b
2a
2+
4ac-b2
4a
,其中頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
)得到結(jié)論.
解答:解:拋物線(xiàn)y=2(x+1)2-2的頂點(diǎn)坐標(biāo)為(-1,-2).
故答案為(-1,-2).
點(diǎn)評(píng):本題考查了二次函數(shù)y=ax2+bx+c(a>0)的性質(zhì):拋物線(xiàn)的頂點(diǎn)式為y=a(x+
b
2a
2+
4ac-b2
4a
,其中頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
),拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=-
b
2a
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•錫山區(qū)一模)分解因式:(1)x2-9=
(x+3)(x-3)
(x+3)(x-3)
;(2)4x2-4x+1=
(2x-1)2
(2x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•錫山區(qū)一模)某數(shù)學(xué)興趣小組開(kāi)展了一次活動(dòng),過(guò)程如下:設(shè)∠BAC=θ(0°<θ<90°).現(xiàn)把小棒依次擺放在兩射線(xiàn)AB、AC之間,并使小棒兩端分別落在兩射線(xiàn)上,從點(diǎn)A1開(kāi)始,用等長(zhǎng)的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1
(1)若已經(jīng)向右擺放了3根小棒,且恰好有∠A4A3A=90°,則θ=
22.5°
22.5°

(2)若只能擺放5根小棒,則θ的范圍是
15°≤θ<18°
15°≤θ<18°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•錫山區(qū)一模)(1)計(jì)算:(
1
2
-1-
2
cos45°+3×(2012-π)0;
(2)解不等式組:
x-1>2          ①
x-3≤2+
1
2
x    ②
     
(3)化簡(jiǎn):
2x
x2-4
-
1
x-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•錫山區(qū)一模)如圖,若正方形ABCD的四個(gè)頂點(diǎn)恰好分別在四條平行線(xiàn)l1、l2、l3、l4上,設(shè)這四條直線(xiàn)中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h3
(2)現(xiàn)在平面直角坐標(biāo)系內(nèi)有四條直線(xiàn)l1、l2、l3、x軸,且l1∥l2∥l3∥x軸,若相鄰兩直線(xiàn)間的距離為1,2,1,點(diǎn)A(4,4)在l1,能否在l2、l3、x軸上各找一點(diǎn)B、C、D,使以這四個(gè)點(diǎn)為頂點(diǎn)的四邊形為正方形?若能,請(qǐng)直接寫(xiě)出B、C、D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案