【題目】如圖,在△ABC中,AB=10,BC=12,BC邊上的中線AD=8.
(1)證明:△ABC為等腰三角形;
(2)點(diǎn)H在線段AC上,試求AH+BH+CH的最小值.

【答案】
(1)解:∵AD是BC邊上的中線,

∴BD=DC=6.

在△ABD中,BD2+AD2=62+82=102=AB2

∴△ABD為直角三角形.

∴∠ADB=90°.

∴AD⊥BC.

∵AD⊥BC,BD=DC,

∴AB=AC.

∴△ABC為等腰三角形.


(2)解:∵AH+BH+CH=AC+BH=10+BH,

∴當(dāng)BH最小時(shí),AH+BH+CH有最小值.

由垂線段的性質(zhì)可知當(dāng)BH⊥AC時(shí),BH有最小值.

BHAC= BCAD,即 ×10BH= ×12×8,

解得:BH=9.6.

∴AH+BH+CH的最小值=10+9.6=19.6.


【解析】(1)由三角形的中線的定義可知BD=DC=6,然后依據(jù)勾股定理的逆定理可證明△ABD為直角三角形,故此AD⊥BC,則AD為BC的垂直平分線,依據(jù)線段垂直平分線的性質(zhì)可知AB=AC;(2)由題意可得到CH+AC=AC=10,故此當(dāng)BH最小時(shí),AH+BH+CH有最小值,依據(jù)垂線段的性質(zhì)可知當(dāng)BH⊥AC時(shí),BH有最小值,在△ABC中,依據(jù)面積法可求得BH的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A1(2,2)在直線y=x上,過點(diǎn)A1作A1B1y軸交直線于點(diǎn)B1,以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角A1B1C1,再過點(diǎn)C1作A2B2y軸,分別交直線y=x和于A2,B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),A2B2為直角邊在A2B2的右側(cè)作等腰直角A2B2C2…,按此規(guī)律進(jìn)行下去,則等腰直角AnBnCn的面積為 .(用含正整數(shù)n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=﹣2x﹣2.
(1)根據(jù)關(guān)系式畫出函數(shù)的圖象.
(2)求出圖象與x軸、y軸的交點(diǎn)A、B的坐標(biāo).
(3)求A、B兩點(diǎn)間的距離.
(4)求出△AOB的面積.
(5)y的值隨x值的增大怎樣變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形具有而菱形不具有的性質(zhì)是(

A.兩組對(duì)邊分別平行B.對(duì)角線互相垂直

C.對(duì)角線相等D.兩組對(duì)角分別相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把點(diǎn)P(﹣5,3)向右平移8個(gè)單位得到點(diǎn)P1 , 再將點(diǎn)P1繞原點(diǎn)旋轉(zhuǎn)90°得到點(diǎn)P2 , 則點(diǎn)P2的坐標(biāo)是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°.Rt△DEF中,∠EDF=90°,∠E=45°).點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過C,且BC=2.

1)求證:ADC∽△APD;

2)求APD的面積;

3)如圖②,將DEF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角60°),此時(shí)的等腰直角三角尺記為DE′F′,DE′AC于點(diǎn)M,DF′BC于點(diǎn)N,試判斷的值是否會(huì)隨著的變化而變化,如果不變,請(qǐng)求出的值;反之,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求值: 其中x的值從不等式組的整數(shù)解中選取.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題“相等的角是對(duì)頂角”是命題(填“真”或“假”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地為了打造風(fēng)光帶,將一段長(zhǎng)為360m的河道整治任務(wù)由甲、乙兩個(gè)工程隊(duì)先后接力完成,共用時(shí)20天,已知甲工程隊(duì)每天整治24m,乙工程隊(duì)每天整治16m.求甲、乙兩個(gè)工程隊(duì)分別整治了多長(zhǎng)的河道.

查看答案和解析>>

同步練習(xí)冊(cè)答案