【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.

1△ABC的面積等于    ;

2)若四邊形DEFG△ABC中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)    

【答案】16;

2)詳見解析

【解析】

1△ABCAB為底,高為3個單位,求出面積即可:。

2)作出所求的正方形,如圖所示,畫圖方法為:取格點P,連接PC,過點APC的平行線,與BC交于點Q,連接PQAC相交得點D,過點DCB的平行線,與AB相交得點E,分別過點DEPC的平行線,與CB相交得點G,F,則四邊形DEFG即為所求。

16;

2)取格點P,連接PC,過點APC的平行線,與BC交于點Q,連接PQAC相交得點D,過點DCB的平行線,與AB相交得點E,分別過點D、EPC的平行線,與CB相交得點G,F,則四邊形DEFG即為所求。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=24AC=18,DAC上一點,AD=6,在AB上取一點E,使A、D、E三點組成的三角形與△ABC相似,則AE的長為( )

A.8B.C.8D.89

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人五一放假期間去登盤山掛月峰,甲先開車沿小路開到了距離登山入口100米的地方后,開始以10/分鐘的登山上升速度徒步登山;甲開始徒步登山同時,乙直接從登山入口開始徒步登山,起初乙以15/分鐘的登山上升速度登山,兩分鐘后得知甲已經(jīng)在半山腰,于是乙以甲登山上升速度的3倍提速.兩人相約只登到距地面高度為300米的地方,設(shè)兩人徒步登山時間為(分鐘)

(Ⅰ)根據(jù)題意,填寫下表:

徒步登山時間/時間

2

3

4

5

甲距地面高度/

120

______

140

______

乙距地面高度/

30

60

______

______

(Ⅱ)請分別求出甲、乙兩人徒步登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式;

(Ⅲ)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是直角邊長為1cm的等腰直角三角形,動點P、Q同時從AB兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動,設(shè)點P的運動時間為ts),解答下列各問題:

1)當t為何值時,△PBQ是直角三角形?

2)設(shè)四邊形APQC的面積為ycm2),求yt的關(guān)系式;是否存在某一時刻t,使四邊形APQC的面積是△ABC面積的二分之一?如果存在,求出t的值;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一臺實物投影儀,圖2是它的示意圖,折線表示固定支架,垂直水平桌面于點,點為旋轉(zhuǎn)點,可轉(zhuǎn)動,當繞點順時針旋轉(zhuǎn)時,投影探頭始終垂直于水平桌面,經(jīng)測量:,,.(結(jié)果精確到0.1

1)如圖2,,

①填空:_________°;

②求投影探頭的端點到桌面的距離.

2)如圖3,將(1)中的向下旋轉(zhuǎn),當投影探頭的端點到桌面的距離為時,求的大。▍⒖紨(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,為原點,拋物線經(jīng)過點,對稱軸為直線,點關(guān)于直線的對稱點為點.過點作直線軸,交軸于點.

(Ⅰ)求該拋物線的解析式及對稱軸;

(Ⅱ)點軸上,當的值最小時,求點的坐標;

(Ⅲ)拋物線上是否存在點,使得,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校計劃購買某種樹苗綠化校園,甲、乙兩林場這種樹苗的售價都是每棵20元,又各有不同的優(yōu)惠方案,甲林場:若一次購買20棵以上,售價是每棵18元;乙林場:若一次購買10棵以上,超過10棵部分打8.5折。設(shè)學校一次購買這種樹苗x棵(x是正整數(shù)).

(Ⅰ)根據(jù)題意填寫下表:

學校一次購買樹苗(棵)

10

15

20

40

在甲林場實際花費(元)

200

300

在乙林場實際花費(元)

200

370

710

(Ⅱ)學校在甲林場一次購買樹苗,實際花費記為(元),在乙林場一次購買樹苗,實際花費記為(元),請分別寫出x的函數(shù)關(guān)系式;

(Ⅲ)當時,學校在哪個林場一次購買樹苗,實際花費較少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點A2,0),點B0,),點O0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A'OB',點A、B旋轉(zhuǎn)后的對應(yīng)點為A',B',記旋轉(zhuǎn)角為α

(Ⅰ)如圖1,A'B'恰好經(jīng)過點A時,求此時旋轉(zhuǎn)角α的度數(shù),并求出點B'的坐標;

(Ⅱ)如圖2,若0°<α90°,設(shè)直線AA'和直線BB'交于點P,求證:AA'⊥BB';

(Ⅲ)若0°<α360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在半徑為1上,直線相切,,連接于點.

(Ⅰ)如圖①,若,求的長;

(Ⅱ)如圖②,交于點,若,求的長.

查看答案和解析>>

同步練習冊答案