如圖,A、B、C為一個(gè)平行四邊形的三個(gè)頂點(diǎn),且A、B、C三點(diǎn)的坐標(biāo)分別精英家教網(wǎng)為(3,4)、(6,2)、(5,6).
(1)請(qǐng)直接寫(xiě)出這個(gè)平行四邊形第四個(gè)頂點(diǎn)的坐標(biāo);
(2)求此平行四邊形的周長(zhǎng).
分析:(1)根據(jù)點(diǎn)的位置和平行四邊形的判定即可求出D的坐標(biāo);
(2)根據(jù)點(diǎn)的坐標(biāo)和勾股定理即可求出AB、AC、CB的長(zhǎng),再利用平行四邊形的性質(zhì)就能求出平行四邊形的周長(zhǎng).
解答:解:(1)D點(diǎn)的坐標(biāo)是(4,0),(8,4),(2,8).

(2)當(dāng)D點(diǎn)的坐標(biāo)是(4,0)時(shí),由勾股定理得:
AD=
(4-3)2+42
=
17
,
AC=
(5-3)2+(5-3)2
=2
2

∴平行四邊形ADBC的周長(zhǎng)是2(
17
+2
2
)=2
17
+4
2
;
當(dāng)D點(diǎn)的坐標(biāo)是(8,4)時(shí),同法可求:
AB=
13
,
∵AC=2
2

∴平行四邊形ABDC的周長(zhǎng)是2(
13
+2
2
)=2
13
+4
2

當(dāng)D點(diǎn)的坐標(biāo)是(2,8)時(shí),同法可求:
CB=
17
,
∴平行四邊形ABCD的周長(zhǎng)是2(
13
+
17
)=2
13
+2
17

答:平行四邊形的周長(zhǎng)是2
17
+4
2
或2
13
+4
2
或2
13
+2
17
點(diǎn)評(píng):本題主要考查了平行四邊形的性質(zhì)和判定,坐標(biāo)與圖形性質(zhì),勾股定理等知識(shí)點(diǎn)解此題的關(guān)鍵是求各線段的長(zhǎng).用的數(shù)學(xué)思想是分類(lèi)討論思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,Rt△ABC中,∠C=90°,AC=12,BC=5,點(diǎn)M在邊AB上,且AM=6.
(1)動(dòng)點(diǎn)D在邊AC上運(yùn)動(dòng),且與點(diǎn)A,C均不重合,設(shè)CD=x.
①設(shè)△ABC與△ADM的面積之比為y,求y與x之間的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);
②當(dāng)x取何值時(shí),△ADM是等腰三角形?寫(xiě)出你的理由.
(2)如圖2,以圖1中的為一組鄰邊的矩形中,動(dòng)點(diǎn)在矩形邊上運(yùn)動(dòng)一周,能使是M為頂角的等腰三角形共有多少個(gè)?(直接寫(xiě)結(jié)果,不要求說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,中心陰影部分為一圓形餐桌,開(kāi)始時(shí)有A、B、C、D、E、F共6人圍成圓形繞桌而坐.已知餐桌所在圓的半徑為60厘米,每人距餐桌外緣的最短距離均為12厘米,相鄰2人間的弧長(zhǎng)均相等.席間又有G、H 2人加入,于是每人都將座位向外移了移,并保持8人仍圍成圓形繞桌而坐,且相鄰2人間的弧長(zhǎng)與6人就餐時(shí)相等(不考慮其它因素).
(1)問(wèn):相鄰2人間的弧長(zhǎng)是多少?(結(jié)果保留π)
(2)求8人就餐時(shí)其中任意一人距餐桌外緣的最短距離是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)一模)如圖,某商場(chǎng)開(kāi)業(yè),要為一段樓梯鋪上紅地毯,已知樓梯高AB=6m,坡面AC的坡度i=1:
43
,則至少需要紅地毯
14
14
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第1章《反比例函數(shù)》中考題集(26):1.3 反比例函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,Rt△ABC中,∠C=90°,AC=12,BC=5,點(diǎn)M在邊AB上,且AM=6.
(1)動(dòng)點(diǎn)D在邊AC上運(yùn)動(dòng),且與點(diǎn)A,C均不重合,設(shè)CD=x.
①設(shè)△ABC與△ADM的面積之比為y,求y與x之間的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);
②當(dāng)x取何值時(shí),△ADM是等腰三角形?寫(xiě)出你的理由.
(2)如圖2,以圖1中的為一組鄰邊的矩形中,動(dòng)點(diǎn)在矩形邊上運(yùn)動(dòng)一周,能使是M為頂角的等腰三角形共有多少個(gè)?(直接寫(xiě)結(jié)果,不要求說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(72):23.6 反比例函數(shù)(解析版) 題型:解答題

如圖1,Rt△ABC中,∠C=90°,AC=12,BC=5,點(diǎn)M在邊AB上,且AM=6.
(1)動(dòng)點(diǎn)D在邊AC上運(yùn)動(dòng),且與點(diǎn)A,C均不重合,設(shè)CD=x.
①設(shè)△ABC與△ADM的面積之比為y,求y與x之間的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);
②當(dāng)x取何值時(shí),△ADM是等腰三角形?寫(xiě)出你的理由.
(2)如圖2,以圖1中的為一組鄰邊的矩形中,動(dòng)點(diǎn)在矩形邊上運(yùn)動(dòng)一周,能使是M為頂角的等腰三角形共有多少個(gè)?(直接寫(xiě)結(jié)果,不要求說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案