【題目】如圖,AB為圓O的直徑,C為圓O上的一點,D為BA延長線上的一點,,線段DF分別交AC,BC于點E,F,且=45°,圓O的半徑為5,,則CF的長( )
A.B.3C.D.4
【答案】A
【解析】
先根據(jù)三角函數(shù)計算AC=6,BC=8,證明△CAD∽△BCD,得,證明△CED∽△BFD,列比例式可得CF的長.
∵AB為圓O的直徑
∴∠BCA=90°
∵AB=2r=10,
設(shè)AC=3x,BC=4x,則AB=5x=10
∴x=2
∴AC=6,BC=8,
∵∠ACD=∠B,∠ADC=∠CDB,
∴△CAD∽△BCD,
∴
∵∠CEF=45°,∠ACB=90°,
∴∠CFE=45°,CE=CF,
設(shè)CF=CE=a,
∵∠CEF=∠ACD+∠CDE,
∠CFE=∠B+∠BDF,
∴∠CDE=∠BDF,
又∵∠ACD=∠B,
∴△CED∽△BFD,
∴,即
解得:
故選:A
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
(1)如圖1,在Rt△ABC中,∠A=90°,AB=kAC(k>1),D是AB上一點,DE∥BC,則BD,EC的數(shù)量關(guān)系為 .
類比探究
(2)如圖2,將△AED繞著點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a<90°),連接CE,BD,請問(1)中BD,EC的數(shù)量關(guān)系還成立嗎?說明理由
拓展延伸:
(3)如圖3,在(2)的條件下,將△AED繞點A繼續(xù)旋轉(zhuǎn),旋轉(zhuǎn)角為a(a>90°).直線BD,CE交于F點,若AC=1,AB=,則當(dāng)∠ACE=15°時,BFCF的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形方格中,和的頂點都在邊長為1的小正方形的頂點上.
(1)填空: , ;
(2)判斷與是否相似,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎活動,凡在開業(yè)當(dāng)天進(jìn)店購物的顧客,都能獲得一次抽獎的機會,抽獎規(guī)則如下:在一個不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3的3個小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機取出一個小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機取出一個小球,記下小球上標(biāo)有的數(shù)字,并計算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為6,則可獲得50元代金券一張;若所得的數(shù)字之和為5,則可獲得30元代金券一張;若所得的數(shù)字之和為4,則可獲得15元代金券一張;其它情況都不中獎.
(1)請用列表或樹狀圖的方法(選其中一種即可),把抽獎一次可能出現(xiàn)的結(jié)果表示出來.
(2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎活動,求能中獎的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七(2)班共有50名學(xué)生,老師安排每人制作一件型或型的陶藝品,學(xué),F(xiàn)有甲種制作材料36,乙種制作材料29,制作、兩種型號的陶藝品用料情況如下表:
需甲種材料 | 需乙種材料 | |
1件型陶藝品 | 0.9 | 0.3 |
1件型陶藝品 | 0.4 | 1 |
(1)設(shè)制作型陶藝品件,求的取值范圍;
(2)請你根據(jù)學(xué),F(xiàn)有材料,分別寫出七(2)班制作型和型陶藝品的件數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某商場從一樓到二樓的自動扶梯,圖2是側(cè)面示意圖,MN是二樓樓頂,MN∥PQ,點C在MN上,且位于自動扶梯頂端B點的正上方,BC⊥MN.測得AB=10米,在自動扶梯底端A處測得點C的仰角為50°,點B的仰角為30°,求二樓的層高BC(結(jié)果保留根號)
(參考數(shù)據(jù):sin50°=0.77,cos50°=0.64,tan50°=1.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點在上,點同時從點出發(fā),分別沿以每秒個單位長度的速度向點勻速運動,點到達(dá)點后立刻以原速度沿向點運動,點運動到點時停止,點也隨之停止.在點運動過程中,以為邊作正方形使它與在線段的同鍘.設(shè)運動的時間為秒,正方形與重疊部分面積為.
當(dāng)時,求正方形的頂點剛好落在線段上時的值;
當(dāng)時,直接寫出當(dāng)為等腰三角形時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線 (為常數(shù))與軸交于點和與軸交于點,點為拋物線頂點.
(Ⅰ)當(dāng)時,求點,點的坐標(biāo);
(Ⅱ)①若頂點在直線上時,用含有的代數(shù)式表示;
②在①的前提下,當(dāng)點的位置最高時,求拋物線的解析式;
(Ⅲ)若,當(dāng)滿足值最小時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com