【題目】在直角梯形ABCD中,ABCD,∠BCD=90°,AB=AD=10cm,BC=8cm。點(diǎn)P從點(diǎn)A出發(fā),以每秒3cm的速度沿折線ABCD運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),以每秒2cm的速度沿線段DC方向向點(diǎn)C運(yùn)動(dòng)。已知?jiǎng)狱c(diǎn)PQ同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)C時(shí),P,Q運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求CD的長(zhǎng).

(2)t為何值時(shí)?四邊形PBQD為平行四邊形.

(3)在點(diǎn)P,點(diǎn)Q的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得△BPQ的面積為20cm2?若存在,請(qǐng)求出所有滿足條件的t的值;若不存在,請(qǐng)說明理由.

【答案】(116;(2;(3.

【解析】試題分析:(1)過點(diǎn)AAM⊥CDM,四邊形AMCB是矩形,AM=BC,AD是已知的,根據(jù)勾股定理求出DM,CM=AB,所以CD就求出來了;(2)當(dāng)四邊形PBQD為平行四邊形時(shí),點(diǎn)PAB上,點(diǎn)QDC上,用t表示出BP,DQ的長(zhǎng),滿足BP=DQ,求出t值,則BP,DQ即可求出,然后求出CQ,用勾股定理求出BQ,四邊形PBQD的周長(zhǎng)就求出來了;(3DQC需要8秒,所以t的范圍是0≤t≤8,Q根據(jù)P所在線段不同,分三種情況討論,即當(dāng)點(diǎn)P在線段AB上時(shí),即時(shí),用t表示出BP的長(zhǎng),列三角形BPQ的面積等于20的方程求解;當(dāng)點(diǎn)P在線段BC上時(shí),即時(shí),用t表示出BP,CQ的長(zhǎng),建立三角形BPQ的面積等于20的方程求解;當(dāng)點(diǎn)P在線段CD上時(shí),因?yàn)樗麄兿嘤龅臅r(shí)間是,若點(diǎn)PQ的右側(cè),即6≤t≤,用t表示出PQ的長(zhǎng),進(jìn)而列出面積方程式求解;若點(diǎn)PQ的左側(cè),即,用t表示出PQ的長(zhǎng),列出面積方程式求解.

試題解析:(1)過點(diǎn)AAM⊥CDM,根據(jù)勾股定理,AD=10,AM=BC=8,∴DM==6,∴CD=16;(2)當(dāng)四邊形PBQD為平行四邊形時(shí),點(diǎn)PAB上,點(diǎn)QDC上,如圖,由題知:AP=3t,BP=10﹣3t,DQ=2t,∴10﹣3t=2t,解得t=2,此時(shí),BP=DQ=4,CQ=12,,四邊形PBQD的周長(zhǎng)=2BP+BQ=

3當(dāng)點(diǎn)P在線段AB上時(shí),到B點(diǎn)時(shí)是秒,即時(shí),如圖,BP=10﹣3tBC=8,

當(dāng)點(diǎn)P在線段BC上時(shí),P到達(dá)C點(diǎn)t值時(shí)6秒,即時(shí),如圖,BP=AB+BP-AB=3t﹣10DQ=2t,CQ=16﹣2t,,化簡(jiǎn)得:3t2﹣34t+100=0,△=﹣440,所以方程無(wú)實(shí)數(shù)解.此種情況不存在三角形BPQ的面積是20;

當(dāng)點(diǎn)P在線段CD上時(shí),P點(diǎn)與Q點(diǎn)相遇時(shí),可列2t+3t=10+8+16,t=,相遇時(shí)間是,若點(diǎn)PQ的右側(cè),即6≤t≤,則有PQ=34-2t+3t=34﹣5t,于是,解此方程得:

6,舍去,若點(diǎn)PQ的左側(cè),即,則有PQ=2t+3t-34=5t﹣34,可列方程:,解得:t=78綜合得出滿足條件的t值存在,其值分別為,t2=78

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司到果園基地購(gòu)買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對(duì)購(gòu)買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.

(1)分別寫出該公司兩種購(gòu)買方案的付款y(元)與所購(gòu)買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(2)依據(jù)購(gòu)買量判斷,選擇哪種購(gòu)買方案付款最少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BI,CI分別平分∠ABC,∠ACB,過I點(diǎn)作DE∥BC,交AB于D,交AC于E,給出下列結(jié)論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長(zhǎng)等于AB+AC.其中正確的是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙D的直徑,AD切⊙D于點(diǎn)A,EC=CB.則下列結(jié)論:①BA⊥DA; ②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個(gè)數(shù)有(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D在等邊△ABC的邊BC上.
(1)把△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)C與點(diǎn)B重合,畫出旋轉(zhuǎn)后的△ABD′;
(2)如果AC=4,CD=1,求(1)中點(diǎn)D旋轉(zhuǎn)所走過的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個(gè)數(shù)有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張等邊三角形紙片沿中位線剪成4個(gè)小三角形,稱為第一次操作;然后,將其中的一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到7個(gè)小三角形,稱為第二次操作;再將其中一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到10個(gè)小三角形,稱為第三次操作;…根據(jù)以上操作,若要得到100個(gè)小三角形,則需要操作的次數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長(zhǎng)之和為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC的兩邊分別平行于∠DEF的兩邊,且∠ABC=25°.

(1)1=________________,2=________________;

(2)請(qǐng)觀察∠1、2分別與∠ABC有怎樣的關(guān)系,歸納出一個(gè)命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案