【題目】如圖,在等邊中,厘米,厘米.如果點厘米/秒的速度運動,如果點在線段上由點向點運動,點在線段上由點向點運動.它們同時出發(fā),若點的運動速度與點的運動速度相等.

(1)經(jīng)過秒后,是否全等?請說明理由.

(2)當兩點的運動時間為多少時,是一個直角三角形?

【答案】1)△BMN≌△CDM.理由見解析;

2)當t=秒或t=秒時,△BMN是直角三角形.

【解析】

1)根據(jù)題意得CM=BN=6cm,所以BM=4cm=CD.又∠B=C=60°,根據(jù)“SAS”可證明△BMN≌△CDM;
(2)設(shè)運動時間為t秒,分別表示出CMBN.分①∠NMB=90°;②∠BNM=90°兩種情況,運用直角三角形的性質(zhì)求解.

解:(1)△BMN≌△CDM.理由如下:
VN=VM=3厘米/秒,且t=2秒,
CM=2×3=6cm
BN=2×3=6cm
BM=BC-CM=10-6=4cm
BN=CM
CD=4cm
BM=CD
∵∠B=C=60°,
∴△BMN≌△CDM.(SAS
2)設(shè)運動時間為t秒,△BMN是直角三角形.

有兩種情況:
①當∠NMB=90°時,
∵∠B=60°,
∴∠BNM=90°-B=90°-60°=30°
BN=2BM,
3t=2×10-3t
t=(秒);
②當∠BNM=90°時,
∵∠B=60°
∴∠BMN=90°-B=90°-60°=30°
BM=2BN,
10-3t=2×3t
t=(秒)
∴當t=秒或t=秒時,△BMN是直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某水果店以每千克4元的價格購進一批水果,由于銷售狀況良好,該店又購進同一種水果,第二次進貨價格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進水果重量的2倍,這樣該水果店兩次購進水果共花去了2200元.

1)該水果店兩次分別購買了多少元的水果?

2)在銷售中,盡管兩次進貨的價格不同,但水果店仍以相同的價格售出,若第一次購進的水果有3%的損耗,第二次購進的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市對進貨價為10元/千克的某種蘋果的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(2)應怎樣確定銷售價,使該品種蘋果的每天銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點在格點上.

1作出與△ABC關(guān)于x軸對稱的圖形△A1B1C1

2)求出A1,B1C1三點坐標;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習投影后,小明、小穎利用燈光下自己的影子長度來測量一路燈的高度,并探究影子長度的變化規(guī)律.如圖所示,在同一時間,身高為1.6 m的小明(AB)的影子BC長是3m,而小穎(EH)剛好在路燈燈泡的正下方H點,并測得HB=6m.

(1)請在圖中畫出形成影子的光線,并確定路燈燈泡所在的位置G;

(2)求路燈燈泡的垂直高度GH;

(3)如果小明沿線段BH向小穎(H)走去,當小明走到BH中點B1處時,求其影子B1C1的長;當小明繼續(xù)走剩下的路程的B2處時,求其影子B2C2的長;當小明繼續(xù)走剩下路程的B3處時,……按此規(guī)律繼續(xù)走下去,當小明走剩下路程的處時,其影子的長為________m(直接用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖表示的是汽車在行駛的過程中,速度隨時間變化而變化的情況.

(1)汽車從出發(fā)到最后停止共經(jīng)過了多少時間?它的最高時速是多少?

(2)汽車在那些時間段保持勻速行駛?時速分別是多少?

(3)出發(fā)后8分到10分之間可能發(fā)生了什么情況?

(4)用自己的語言大致描述這輛汽車的行駛情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人在一環(huán)形場地上從A點同時同向勻速跑步,甲的速度是乙的倍,4分鐘兩人首次相遇,此時乙還需要跑300米才跑完第一圈,求甲、乙二人的速度及環(huán)形場地的周長列方程求解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于P,Q兩點給出如下定義:若點Px,y軸的距離中的最大值等于點Qx,y軸的距離中的最大值,則稱P,Q兩點為等距點圖中的P,Q兩點即為等距點”.

1)已知點A的坐標為.①在點中,為點A等距點的是________;②若點B的坐標為,且A,B兩點為等距點,則點B的坐標為________.

2)若兩點為等距點,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的xy的部分對應值如下表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

5

y

12

5

0

﹣3

﹣4

﹣3

0

5

12

給出了結(jié)論:

(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;

(2)當﹣<x<2時,y<0;

(3)a﹣b+c=0;

(4)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè)

則其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案