(2009•孝感)三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設(shè)計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:
(1)牧童B的劃分方案中,牧童______(填A、B或C)在有情況時所需走的最大距離較遠;
(2)牧童C的劃分方案是否符合他們商量的劃分原則,為什么?(提示:在計算時可取正方形邊長為2)

【答案】分析:(1)易得A,B的距離相等,設(shè)正方形的邊長為1,他們到最遠處的距離為這個直角三角形斜邊的一半,根據(jù)勾股定理進行計算可得C的距離最大;
(2)分別計算A,C的面積比較它們是否相等作出判斷.
解答:解:(1)C;

(2)牧童C的劃分方案不符合他們商量的劃分原則.
理由如下:如圖,在正方形DEFG中,四邊形HENM、MNFP、DHPG都是矩形,且HN=NP=HG.
HE=PF,∠E=∠F=90°,
∴Rt△HEN≌Rt△PFN,
∴EN=NF,S矩形HENM=S矩形MNFP
取正方形邊長為2,設(shè)HD=x,則HE=2-x.
在Rt△HEN和Rt△DHG中.
由HN=HG得:EH2+EN2=DH2+DG2
即:(2-x)2+12=x2+22
解得:

∴S矩形HENM=S矩形MNFP=,S矩形DHPG=
∴S矩形HENM≠S矩形DHPG
∴牧童C的劃分方案不符合他們商量的劃分原則.
點評:根據(jù)滿足的條件找到線段之間的關(guān)系,然后根據(jù)勾股定理以及面積公式進行計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《數(shù)據(jù)分析》(02)(解析版) 題型:選擇題

(2009•孝感)某一段時間,小芳測得連續(xù)五天的日最低氣溫后,整理得出下表(有兩個數(shù)據(jù)被遮蓋),被遮蓋的兩個數(shù)據(jù)依次是( )
日期方差平均氣溫
最低氣溫1℃-1℃2℃0℃1℃

A.3℃,2
B.3℃,
C.2℃,2
D.2℃,

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2009•孝感)三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設(shè)計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:
(1)牧童B的劃分方案中,牧童______(填A、B或C)在有情況時所需走的最大距離較遠;
(2)牧童C的劃分方案是否符合他們商量的劃分原則,為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市閘北區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2009•孝感)如圖,點M是△ABC內(nèi)一點,過點M分別作直線平行于△ABC的各邊,所形成的三個小三角形△1,△2,△3(圖中陰影部分)的面積分別是4,9和49.則△ABC的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省孝感市中考數(shù)學試卷(解析版) 題型:解答題

(2009•孝感)三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設(shè)計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:
(1)牧童B的劃分方案中,牧童______(填A、B或C)在有情況時所需走的最大距離較遠;
(2)牧童C的劃分方案是否符合他們商量的劃分原則,為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

同步練習冊答案