【題目】某校欲招聘一名數(shù)學(xué)教師,學(xué)校對甲、乙、丙三位候選人進行了三項能力測試,各項測試成績滿分均為100分,根據(jù)結(jié)果擇優(yōu)錄用.三位候選人的各項測試成績?nèi)缦卤硭荆?/span>
測試項目 | |||
測試成績/分 | |||
甲 | 乙 | 丙 | |
教學(xué)能力 | 85 | 73 | 73 |
科研能力 | 70 | 71 | 65 |
組織能力 | 64 | 72 | 84 |
(1)如果根據(jù)三項測試的平均成績,誰將被錄用,說明理由;
(2)根據(jù)實際需要,學(xué)校將教學(xué)、科研和組織三項能力測試得分按5∶3∶2的比例確定每人的成績,誰將被錄用,說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā)(記為原點0)向東走3m,他把數(shù)軸上+3的位置記為點A,他又東走了5m,記為點B,點B表示什么數(shù)?接著他又向西走了10m到點C,點C表示什么數(shù)?請你畫出數(shù)軸,并在數(shù)軸上標(biāo)出點A、點B的位置,這時如果小明要回家,則小明應(yīng)如何走?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組由3名男生和1名女生組成,在一次合作學(xué)習(xí)后,開始進行成果展示.
(1)如果隨機抽取1名同學(xué)單獨展示,那么女生展示的概率為 ;
(2)如果隨機抽取2名同學(xué)共同展示,求同為男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:
乙校成績統(tǒng)計表
分?jǐn)?shù)/分 | 人數(shù)/人 |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;
(2)請你將圖②補充完整;
(3)求乙校成績的平均分;
(4)經(jīng)計算知s甲2=135,s乙2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為選派一名學(xué)生參加全市實踐活動技能競賽,A.B兩位同學(xué)在學(xué)校實習(xí)基地現(xiàn)場進行加工直徑為20mm的零件的測試,他倆各加工的10個零件的相關(guān)數(shù)據(jù)依次如下圖表所示(單位:mm)
平均數(shù) | 方差 | 完全符合要求個數(shù) | |
A | 20 | 0.026 | 2 |
B | 20 | SB2 |
根據(jù)測試得到的有關(guān)數(shù)據(jù),試解答下列問題:
⑴ 考慮平均數(shù)與完全符合要求的個數(shù),你認(rèn)為 的成績好些;
⑵ 計算出SB2的大小,考慮平均數(shù)與方差,說明誰的成績好些;
⑶ 考慮圖中折線走勢及競賽中加工零件個數(shù)遠(yuǎn)遠(yuǎn)超過10個的實際情況,你認(rèn)為派誰去參賽較合適?說明你的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的方程組 ,給出下列結(jié)論: ① 是方程組的解;
②無論a取何值,x,y的值都不可能互為相反數(shù);
③當(dāng)a=1時,方程組的解也是方程x+y=4﹣a的解;
④x,y的都為自然數(shù)的解有4對.
其中正確的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國南宋時期杰出的數(shù)學(xué)家楊輝是錢塘人,如圖是他在《詳解九章算術(shù)》中記載的“楊輝三角”.此圖揭示了(a+b)n(n為非負(fù)整數(shù))的展開式的項數(shù)及各項系數(shù)的有關(guān)規(guī)律.
(1)請仔細(xì)觀察,填出(a+b)4的展開式中所缺的系數(shù).(a+b)4=a4+4a3b+a2b2+ab2+b4
(2)此規(guī)律還可以解決實際問題:假如今天是星期三,再過7天還是星期三,那么再過814天是星期 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=4cm,CD⊥AB于點D,動點P從點A出發(fā),沿AC以2cm/s的速度向終點C運動,當(dāng)點P出發(fā)后,過點P作PQ∥BC交折線AD﹣DC于點Q,以PQ為邊作等邊三角形PQR,設(shè)四邊形APRQ與△ACD重疊部分圖形的面積為S(cm2),點P運動的時間為t(s).
(1)當(dāng)點Q在線段AD上時,用含t的代數(shù)式表示QR的長;
(2)求點R運動的路程長;
(3)當(dāng)點Q在線段AD上時,求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出以點B、Q、R為頂點的三角形是直角三角形時t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com