【題目】如圖,在平行四邊形ABCD中,AE:EB=1:2,DE交于點F.
(1)求AE:DC的值.
(2)△AEF與△CDF相似嗎?若相似,求出相似比,請說明理由.
(3)如果,求.
【答案】(1)AE∶DC=1∶3;(2)相似,相似比:1∶3(3)
【解析】
(1)由比例的性質(zhì)可得AE∶AB=1∶3,再由平行四邊形對邊相等得DC=AB,所以AE∶DC=1∶3;
(2)由平行四邊形對邊平行,得兩組內(nèi)錯角相等,即可判定相似,相似比= AE∶DC=1∶3;
(3)由相似三角形的面積比等于相似比的平方可求出.
(1)∵AE:EB=1:2
∴AE∶AB=1∶3
∵四邊形ABCD為平行四邊形
∴DC=AB
∴AE∶DC=1∶3
(2)∵四邊形ABCD為平行四邊形
∴DC∥AB
∴∠EAF=∠DCF,∠AEF=∠CDF
∴△AEF∽△CDF
∴相似比= AE∶DC=1∶3
故△AEF與△CDF相似,相似比為1∶3.
(3)∵△AEF∽△CDF
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2﹣2x(a≠0)與x軸交于點A,B(點A在點B的左側(cè))
(1)當(dāng)a=﹣1時,求A,B兩點的坐標;
(2)過點P(3,0)作垂直于x軸的直線l,交拋物線于點C.當(dāng)a=2時,求PB+PC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一張矩形紙片,長15cm,寬9cm,在它的四角各剪去一個同樣的小正方形,然折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是48cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為BC的中點,AE與對角線BD交于點F.
(1)求證:DF=2BF;
(2)當(dāng)∠AFB=90°且tan∠ABD=時, 若CD=,求AD長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則的值是 ___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個小方格都是邊長為1個單位的小正方形,點A、B、C都是格點每個小方格的頂點叫格點,其中,,.
外接圓的圓心坐標是______;
外接圓的半徑是______;
已知與點D、E、F都是格點成位似圖形,則位似中心M的坐標是______;
請在網(wǎng)格圖中的空白處畫一個格點,使∽,且相似比為:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人:
(1)第一輪后患病的人數(shù)為 ;(用含x的代數(shù)式表示)
(2)在進入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com