【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于點E,連CD分別交AE,AB于點F,G,過點A作AH⊥CD交BD于點H.則下列結(jié)論:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正確結(jié)論的個數(shù)為( 。
A. 5 B. 4 C. 3 D. 2
【答案】B
【解析】
①根據(jù)△ABC為等邊三角形,△ABD為等腰直角三角形的性質(zhì),以及頂角∠CAD=150°,即可判斷,②求出與的度數(shù)即可判斷. ③證明
△ADF≌△BAH即可判斷,④根據(jù)兩組角對應(yīng)相等的兩個三角形相似即可判斷.
⑤設(shè),則根據(jù)相似三角形的判定與性質(zhì)即可得出結(jié)論.
∵△ABC為等邊三角形,△ABD為等腰直角三角形,
∴∠BAC=60°、
∴是等腰三角形,且頂角∠CAD=150°,
∴∠ADC=15°,故①正確;
∵AE⊥BD,即∠AED=90°,
∴
∴
∴
由 知故②錯誤;
記AH與CD的交點為P,
由 且∠AFG=60°知∠FAP=30°,
則
在△ADF和△BAH中,
∵
∴△ADF≌△BAH(ASA),
∴,故③正確;
∵
∴,故④正確;
在中,設(shè),則
設(shè)
∵△ADF≌△BAH,
∴
△ABE中,∵
∴
∴
∵
∴
∴即
整理,得:
由x≠0得即 故⑤正確;
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=90°,AE是過A點的一條直線,且B,C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E.
(1)△ABD與△CAE全等嗎?BD與DE+CE相等嗎?請說明理由。
(2)如圖2,若直線AE繞點A旋轉(zhuǎn)到圖②所示的位置(BD<CE)時,其余條件不變,則BD與DE、CE的關(guān)系如何?請說明理由
(3)如圖3,若直線AE繞點A旋轉(zhuǎn)到圖③所示的位置(BD>CE)時,其余條件不變,則BD與DE、CE的關(guān)系如何?
(4)根據(jù)以上的討論,請用簡潔的語言表達BD與DE、CE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的中,,且為上一點.今打算在上找一點,在上找一點,使得與全等,以下是甲、乙兩人的作法:
(甲)連接,作的中垂線分別交、于點、點,則、兩點即為所求
(乙)過作與平行的直線交于點,過作與平行的直線交于點,則、兩點即為所求
對于甲、乙兩人的作法,下列判斷何者正確?( 。
A. 兩人皆正確B. 兩人皆錯誤
C. 甲正確,乙錯誤D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點D為BC的中點.
(1)如圖①,若點E、F分別為AB、AC上的點,且DE⊥DF,求證:BE=AF;
(2)若點E、F分別為AB、CA延長線上的點,且DE⊥DF,那么BE=AF嗎?請利用圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知二次函數(shù)y=k(x﹣ax﹣b),其中a≠b.
(1)若此二次函數(shù)圖象經(jīng)過點(0,k),試求a,b滿足的關(guān)系式.
(2)若此二次函數(shù)和函數(shù)y=x2﹣2x的圖象關(guān)于直線x=2對稱,求該函數(shù)的表達式.
(3)若a+b=4,且當0≤x≤3時,有1≤y≤4,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC.點D從點B出發(fā)沿射線BC移動,以AD為邊在AB的右側(cè)作△ADE,且∠DAE=90°,AD=AE.連接CE.
(1)如圖1,若點D在BC邊上,則∠BCE= °;
(2)如圖2,若點D在BC的延長線上運動.
①∠BCE的度數(shù)是否發(fā)生變化?請說明理由;
②若BC=3,CD=6,則△ADE的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請利用直尺完成下列問題
(1)如圖(1)示,利用網(wǎng)格畫圖:
①在BC上找一點P,使得P到AB和AC的距離相等;
②在射線AP上找一點Q,使QB=QC.
(2)如圖(2)示,點A,B,C都在方格紙的格點上.請你再找一個格點D,使點A,B,C,D組成一個軸對稱圖形,請在圖中標出滿足條件的所有點D的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ECD都是等邊三角形,B、C、D三點在一條直線上,AD與BE相交于點O,AD與CE相交于點F,AC與BE相交于點G.
(1)△BCE與△ACD全等嗎?請說明理由.
(2)求∠BOD度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD垂直平分OA,垂足為點M,連接并延長CO交⊙O于點E,分別連接DE,BE,DB,其中∠EDB=30°,∠CDE的平分線DN交CE于點G,交⊙O于點N,延長CE至點F,使FG=FD.
(1)求證:DF是⊙O的切線;
(2)若⊙O半徑r為8,求線段DB,BE與劣弧DE所圍成的陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com