【題目】閱讀理解:在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|y1﹣y2|.
例如:點(diǎn)P1(1,1),點(diǎn)P2(2,3),因?yàn)?/span>|1﹣2|<|1﹣3|,所以點(diǎn)P1與點(diǎn)P2的“非常距離”為|1﹣3|=2,也就是圖1中線段P1Q與線段P2Q長(zhǎng)度的較大值(點(diǎn)Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點(diǎn)).
(1)已知點(diǎn)A(-,0),B為y軸上的一個(gè)動(dòng)點(diǎn).
①若點(diǎn)B(0,3),則點(diǎn)A與點(diǎn)B的“非常距離”為______;
②若點(diǎn)A與點(diǎn)B的“非常距離”為2,則點(diǎn)B的坐標(biāo)為_______;
③直接寫出點(diǎn)A與點(diǎn)B的“非常距離”的最小值為_______;
(2)已知點(diǎn)D(0,1),點(diǎn)C是直線y=﹣x+3上的一個(gè)動(dòng)點(diǎn),如圖2,求點(diǎn)C與點(diǎn)D“非常距離”的最小值及相應(yīng)的點(diǎn)C的坐標(biāo).
【答案】(1)①3;②(0,2)或(0,﹣2);③;(2)(,).
【解析】
(1)根據(jù)“非常距離”的定義分別計(jì)算|x1﹣x2|與|y1﹣y2|,即可得答案;②根據(jù)點(diǎn)B位于y軸上,設(shè)點(diǎn)B的坐標(biāo)為(0,y).由“非常距離”的定義求得y的值即可;③分別討論-≤y≤時(shí)和y<-或y>時(shí)A與B的“非常距離”即可得答案;(2)設(shè)點(diǎn)C的坐標(biāo)為(x0,-x0+3).根據(jù)材料“若,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|x1﹣x2|”知,C、D兩點(diǎn)的“非常距離”的最小值為|x1﹣x2|=|y1﹣y2|,據(jù)此可以求得點(diǎn)C的坐標(biāo);
(1)①,|0﹣3|=3,
∵<3,
∴點(diǎn)A與點(diǎn)B的“非常距離”為3,
②∵B為y軸上的一個(gè)動(dòng)點(diǎn),
∴設(shè)點(diǎn)B的坐標(biāo)為(0,y).
∵≠2,
∴|0﹣y|=2.
解得,y=2或y=﹣2;
∴點(diǎn)B的坐標(biāo)是(0,2)或(0,﹣2),
③設(shè)點(diǎn)B坐標(biāo)為(0,y),
當(dāng)-≤y≤時(shí),|0﹣y|≤,
∴“非常距離”為,
當(dāng)y<-或y>時(shí),|0﹣y|>
∴“非常距離”為|y|>,
∴點(diǎn)A與點(diǎn)B的“非常距離”的最小值為,
故答案為:3,(0,2)或(0,﹣2),
(2)如圖2,取點(diǎn)C與點(diǎn)D的“非常距離”的最小值時(shí),
根據(jù)運(yùn)算定義“若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的‘非常距離’為|x1﹣x2|”解答,
此時(shí)|x1﹣x2|=|y1﹣y2|.即AC=AD,
∵C是直線y=-x+3上的一個(gè)動(dòng)點(diǎn),點(diǎn)D的坐標(biāo)是(0,1),
∴設(shè)點(diǎn)C的坐標(biāo)為(x0,-x0+3),則
∴或x0=6,
∴或|x0﹣0|=6.
∵<6,
∴點(diǎn)C與點(diǎn)D的“非常距離”的最小值為,
∴-×+3=,
∴C(,),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列問(wèn)題,列出關(guān)于的方程,并將其化成一元二次方程的一般形式.
(1)4個(gè)完全相同的正方形的面積之和是25,求正方形的邊長(zhǎng).
(2)一個(gè)矩形的長(zhǎng)比寬多2,面積是100,求矩形的長(zhǎng).
(3)一個(gè)直角三角形的斜邊長(zhǎng)為10,兩條直角邊相差2,求較長(zhǎng)的直角邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,過(guò)點(diǎn)D向AB,AC兩邊作垂線,垂足分別為E,F(xiàn),那么下列結(jié)論中不一定正確的是( )
A. BD=CD B. DE=DF C. AE=AF D. ∠ADE=∠ADF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為測(cè)量被荷花池相隔的兩樹、的距離,數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如圖所示的測(cè)量方案:在的垂線上取兩點(diǎn)、,再定出的垂線,使、、在一條直線上.其中三位同學(xué)分別測(cè)量出了三組數(shù)據(jù):
、;
、;
、、.
能根據(jù)所測(cè)數(shù)據(jù),求得、兩樹距離的是( )
A. (1) B. (1),(2) C. (2),(3) D. (1),(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=2,BC=1,運(yùn)點(diǎn)P從點(diǎn)B出發(fā),沿路線BCD作勻速運(yùn)動(dòng),那么△ABP的面積與點(diǎn)P運(yùn)動(dòng)的路程之間的函數(shù)圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)在邊上,于點(diǎn).
若,,求的長(zhǎng);
設(shè)點(diǎn)在線段上,點(diǎn)在射線上,以,,為頂點(diǎn)的三角形與有一個(gè)銳角相等,交于點(diǎn).問(wèn):線段可能是的高線還是中線?或兩者都有可能?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖鋼架中,∠AOB=10°,要使鋼架更加牢固,需在其內(nèi)部添加一些鋼管:EF,FG,GH…,且OE=EF=FG=GH…,在OA,OB 足夠長(zhǎng)的情況下,最多能添加這樣的鋼管的根數(shù)為 ( ).
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)畫片《小豬佩奇》分靡全球,受到孩子們的喜愛(ài).現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機(jī)抽取一張卡片,恰好抽到A佩奇的概率為 ;
(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請(qǐng)用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為配合“一帶一路”國(guó)家倡議,某鐵路貨運(yùn)集裝箱物流園區(qū)正式啟動(dòng)了2期擴(kuò)建工程一項(xiàng)地基基礎(chǔ)加固處理工程由2、8兩個(gè)工程公司承擔(dān)建設(shè),己知2工程公司單獨(dú)建設(shè)完成此項(xiàng)工程需要180天工程公司單獨(dú)施工天后,工程公司參與合作,兩工程公司又共同施工天后完成了此項(xiàng)工程.
(1)求工程公司單獨(dú)建設(shè)完成此項(xiàng)工程需要多少天?
(2)由于受工程建設(shè)工期的限制,物流園區(qū)管委會(huì)決定將此項(xiàng)工程劃包成兩部分,要求兩工程公司同時(shí)開工,工程公司建設(shè)其中一部分用了天完成,工程公司建設(shè)另一部分用了天完成,其中,均為正整數(shù),且,,求、兩個(gè)工程公司各施工建設(shè)了多少天?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com