已知方程(x+a)(x-3)=0和方程x2-2x-3=0的解相同,則a=   
【答案】分析:一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值,即用這個數(shù)代替未知數(shù)所得式子仍然成立;分別解兩個方程,解出的根使得兩個方程的根相等,即可求得a的值.
解答:解:解方程(x+a)(x-3)=0,
可得x=-a或x=3;
解方程x2-2x-3=0,
可得x=3或-1;
∵兩個方程的解相同,
∴a=1.
點(diǎn)評:本題考查的是一元二次方程的根即方程的解的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、已知方程(x-1)(x-2)=k2,其中k為實(shí)數(shù)且k≠0,不解方程證明:
(1)這個方程有兩個不相等的實(shí)數(shù)根;
(2)方程的一個根>1,另一個根<1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程x2-3x+k=0有兩個相等的實(shí)數(shù)根,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程x2-x-m=0有整數(shù)根,則整數(shù)m=
 
.(填上一個你認(rèn)為正確的答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、已知方程(m+2)x2+(m+1)x-m=0,當(dāng)m
≠-2
時,它是一元二次方程,當(dāng)m
=-2
時,它是一元一次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、已知方程2xm-3+3=5是一元一次方程,則m=
4

查看答案和解析>>

同步練習(xí)冊答案